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Abstract: This work proposes a Brain Computer 
Interface (BCI) using upper limbs motor imagery tasks 
for people with severe motor disabilities, which can be 
employed to send commands to a telepresence robot. 
The BCI classifies four classes of motor imagery tasks 
from upper limbs. The system is composed of the 
following blocks: a Common Average Reference (CAR) 
filter for signal preprocessing, a Statistical Features 
Extractor of Time Series, and a K-Nearest Neighbors 
classifier. Eight healthy subjects participated in the 
experimental protocol, and performed the motor 
imagery tasks: flexion-extension (F-E) of the right arm, 
F-E of the left arm, F-E of both arms, and arms relaxed.  
The system obtained a success rate of 88% with a kappa 
coefficient of 83% for four classes of motor intentions. 
The results suggest the feasibility of the BCI proposed 
to classify motor imagery tasks, which can be used as 
commands to control the telepresence robot. 
Keywords: Telepresence robot, BCI, motor imaginary 
task. 
 
Introduction 
 

In the world there are many people with severe 
neurological or muscular diseases, such as brainstem 
stroke, spinal cord injury, amyotrophic lateral sclerosis 
(ALS), muscular dystrophies and cerebral palsy. For 
these people, simple tasks such as a standing up or using 
the computer become a challenge [1]. Because of these 
disabilities, interfaces that use speech or movements of 
the limbs become hard to be executed. Many studies are 
being done to create an alternative interaction interface 
for these people in order to send messages or 
commands. A field of study that has gained great 
importance in this direction is the BCI (Brain-Computer 
Interface) [1], [2]. 

Brain-computer interfaces are systems constituted by 
hardware and software that recognizes patterns in brain 
activities. These patterns are translated in signals that 
can control external devices. Thus, this technology 
allows severely paralyzed patients the possibility of 
communicate and control devices, to interact thereby, 
with their surroundings [2]. With the advent of this 
technology, new paths have appeared in order to 
improve the quality of life of people with severe motor 
difficulties. The telepresence robot might be mentioned 

as an example of such application [3]. That system 
builds a physical entity ready to interact and explore a 
real environment, controlled by brain activity signals. 

Many researches have developed in this field of 
study. The work in [4] presents a telepresence system 
that relies on a synchronous P300-based BCI, to choose 
the direction of the user’s intent. In another work, a 
system based on this paradigm was developed, to 
control a guide robot in a museum [5]. In [6] is shown 
the use of SSVEP paradigm to send control commands 
to a mobile robot. The work in [7] presents a BCI 
system based on motor imagination to control a 
telepresence robot.  

The work here proposed also uses this pattern of 
brain activation for the suggested asynchronous BCI, 
which does not need an external synchronized signal. In 
this work, a low cost EEG signal acquisition equipment 
and low complexity computational algorithms to extract 
features and classify are also used for four imaginary 
motor activities: flexion-extension (F-E) of the right 
arm, F-E of the left arm, F-E of both arms, and arms 
relaxed. The BCI is composed for low cost algorithm of 
the processing of the following blocks: a Common 
Average Reference (CAR) filter for signal preprocessing 
[8], a Statistical Features of Time Series and a K-
Nearest Neighbors classifier [9]. 

 
Materials and Methods 
 

— Dataset 
This research uses EEG data captured of eight 

healthy volunteers to obtain a preliminary assessment of 
the proposed BCI system, for controlling the 
telepresence robot. This dataset contains EEG signals 
captured from users during four sessions without 
feedback. The session of each user is six minutes long. 
The subjects performed a given motor imaginary task 
for about ten seconds and then remained in a relaxed 
state for about ten seconds. 

EEG signals were recorded with the Emotiv 
EPOC™ (Figure 1) device using a neuroheadset with 14 
integrated electrodes located at standard positions of the 
International 10-20 system (AF3, AF4, F3, F4, F7, F8, 
FC5, FC6, P7, P8, T7, T8, O1 and O2). EEG channels 
were sampled with 128 Hz at 0.51µV, which is the least 
significant bit voltage resolution. A research ethics 
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committee has approved this study (registry number 
CEP-048/08). 

 

 
 
Figure 1: The Emotiv EPOC device. 
 

— Telepresence robot 
The research robotic platform Pioneer 3DX, 

developed by Mobile Robot Inc., was used in the 
construction of the telepresence robot (Figure 2). The 
Pioneer 3DX is a sturdy robot composed of two-
wheeled differential traction. The platform also has 
ultrasonic sensors, SICK LMS-200 laser, batteries, 
wheel encoders, a microcontroller and an onboard 
computer. The programming environment was executed 
in Ubuntu 12.04 LTS, where was installed a set of 
software development toolkit ARIA (Advanced Robot 
Interface for Applications), a library that hides the 
microcontroller routines by high-level functions 
developed in C++. The client-server communication 
architecture is used in the system through TCP/IP 
connections.  

 

 
Figure 2: Telepresence robotic navigation (TRON). 

 
A structure was built to attach a monitor, a webcam 

and four 12V lead-acid batteries. Two batteries were 
used to power the monitor and the other two to provide 
power to the laser LMS. The batteries were connected in 
parallel to maintain a longer system operation. 

— Signal preprocessing  
Common Average Reference (CAR) is a method for 

providing an inactive reference. The underlying 
principle of this filter type is the mean calculation of all 
EEG channels and its subtraction from selected output 
channels. 
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Where ௜ܸ	

ாோ is the potential between the ith electrode 
and the reference and	ܰ is the total number of 
electrodes. 

Often, noise signals appear on common space 
regions and then picked up by multiple electrodes. 
Therefore, by averaging a set of measurements, the 
signal-to-noise ratio can be increased and, thereby, 
improving the speed and accuracy of the BCI. 

 
— Statistical Features of Time Series 
For EEG signals, a number of typically measured 

statistics can be used to extract basic information about 
the signal as features for the classifier algorithm. For the 
preliminary proposed BCI were computed the following 
statistical features: 
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Where ܺ௡ represents the value of the nth sample of 

the raw signal. 
 

— k-Nearest Neighbours Classifier 
The k-Nearest Neighbours (K-NN) is a relatively 

simple method of classifying patterns, which consists of 
assigning a class to an unknown element using the class 
of the majority of its nearest neighbours, according to a 
particular distance metric (in feature space) [9]. 

The Euclidean distance was used in this work, which 
is obtained by equation (4): 

 

Dj = ට∑ (xi-yij)
2N

i=1                       (4) 

	
Where Dj is jth distance value; ݔ௜ represents ith value 

of feature; yij represents the feature value in ij position; 
N is the features vector dimension. 

 
— Performance Measurement 
Several measures of performance have been 

proposed in BCI in [10] and [11] such as:  
 Accuracy is the percentage of correctly 

classified feature vectors.  
 Information Transfer Rate (ITR) is a standard 

measure of the amount of information 
transferred per unit of time. ITR is defined by 
equation 5: 
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Where ܰ is the number of classes, ܿ is the time per 
selection and ܲ  is the success rate of correct 
classifications. The unit for ܴܶܫ  is bits per second 
(bits/s), but it can be converted in minutes. 

 
 Cohen’s Kappa coefficient is a parameter that 

represents the concordance between the targets 
and the prediction values. In this sense, the 
index here used was proposed for Cohen. The 
Kappa coefficient is defined in equation 6: 
 

	ܽ݌݌ܽܭ ൌ
	௣	ି	௣బ
ଵ	ି	௣బ

                    (6) 

 
Where p is the probability of performing a correct 

classification, p0 is the level of chance and denotes the 
accuracy under the assumption that all agreement 
occurred by chance.  

 
 Sensitivity and specificity: theses metrics in 

BCI research are used to measure in-sample 
proportions of correctly classified positive 
targets (true positives) and the proportion of 
correctly rejecting a negative result (true 
negatives).  
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Where T୮  and T୬  refers to a true positive and 

negative event; F୮and F୬ to a false negative and positive 
event. 

 
Results and Discussion 
 

Tables 1 and 2 show the results of the evaluation 
indexes of the BCI for the eight users.  

 
Table 1: Performance using the indexes of accuracy, 
kappa coefficient and ITR. 

 

Users 
Accuracy 

Two     Four 
classes  classes 

Kappa 
ITR 

[bits/min] 
   

1 0,96  0,92  0,90 11,49  
2 0,96  0,92  0,89 11,48  
3 0,95 0,91 0,88 11,41 
4 0,89  0,77  0,70 10,87 
5 0,91  0,81  0,75 11,01  
6 0,86  0,72  0,63 10,71  
7 1,00  1,00  1,00 12,00 
8 0,98  0,95  0,93 11,64 

Avg. 0,94  0,88  0,83 11,32  
 
 
 
 
 
 

Table 2: Sensitivity and specificity index measured. 
 

Users Sensitivity Specificity 
1 0,92 0,97 
2 0,92 0,97 
3 0,91 0,97 
4 0,77 0,92 
5 0,81 0,94 
6 0,72 0,91 
7 1,00 1,00 
8 0,95 0,98 

Avg. 0,88 0,96 
 

With the given indexes, it is noticeable that some 
subjects had a good performance (users 1, 2, 3, 7 and 8), 
while others had indexes just above the acceptable. For 
a more detailed analysis of these differences, the scalp 
topographic images were built using data from users 6 
and 7, and using R2 as determination coefficient. 

This index calculates how much two signal are 
similar. The EEG signal captured at the relax state were 
used as baseline for this comparison. Thus, FC5 and 
FC6 electrodes were used, because they are the closest 
electrodes from the sensorimotor cortex region, which is 
the most activated area during the motor imagery 
execution.  

At figure 5 and 6, the more intense color represents a 
higher brain activation area. 

 

 
 

Figure 5: Three different moments of user 6 motor 
imaginary: (A) Movement imagery of right arm. (B) 
Movement imagery of left arm. (C) Movement imagery 
of both arms. 
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Figure 6: Three different moments of user 7 motor 
imaginary: (A) Movement imagery of right arm. (B) 
Movement imagery of left arm. (C) Movement imagery 
of both arms. 
 

The difference of the test executions by the subjects 
is clearly noticeable in both figures. It is expected a 
brain contra-lateral behavior during the motor imagery, 
i.e., right arm motor imagery activates the left size of 
the brain and vice-versa [12]. This behavior was 
acquired by subject 7, where data showed intention 
patterns quite disparate, making it more effective to 
classify the characteristics. Subject 6 did not show this 
behavior. The brain region activated during the motor 
task was ipsi-lateral. Thus, it is noticeable that Figure 5 
(A) and (B) are quite similar, meaning that this subject 
activates the same region in both motor imagery tests. 
This makes it more difficult to discriminate this class 
pattern, negatively impacting the system usability. 
 
Conclusion 
 

The proposed BCI using low cost EEG signal 
acquisition equipment showed good results using a 
relatively simple algorithm to extract the features and 
classify the patterns. The next step is to make a 
comparison with other low complexity algorithms, 
which are also used for features extraction and pattern 
classification, then, integrate the best one into the 
telepresence robot.  
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