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Abstract: This article presents a method to obtain a 
myoelectric control system for hand prosthesis with 
individual fingers, wrist flexion/extension and grasp 
movements, based on weak surface electromyogram 
(sEMG) recorded from the forearm, both able-bodied 
and amputees. This study aims to a reduced-channel 
scheme (a single sEMG channel) for hand patterns 
discrimination. A combination of commonly used 
features in the Frequency Domain (FD) and Time 
Domain (TD) with the analysis fractal was studied to 
obtain the best set of features. The results were 
validated with different classifiers showing the high 
performance of the method, above 90%. 
 
Keywords: EMG, hand prostheses, fractal analysis, 
pattern recognition, finger control. 
 
Introduction 
 

The functions to be controlled and the methods in 
pattern recognition to process the surface 
Electromyographic (sEMG) signals have been the focus 
in research about myoelectric prostheses. Most studies 
focus on recognizing forearm contractions and wrist 
movements, and the problems with four or more 
gestures mostly include open/close hand. Some works 
include individual finger classification [1], but a 
validation with amputees and experiments in real time 
are some of the major interest in this research line. 
Mostly traditional techniques to model sEMG signals 
are linear and simple. However, actions involving 
complex tasks like individual finger movements and 
hand gestures cannot be modeled by linear techniques. 
Artificial Intelligence techniques and electrodes arrays 
have also been used to estimate the relative force 
contraction based on spatial distribution [2]. However, 
dexterous movements with fingers and wrist would need 
a precise localization of the electrodes and a calibration 
for each use [3].  

At low-level muscle contraction in processes with 
similar energy, statistical features are not reliable [4]. 
Furthermore, there is a non-linear relationship between 
force and electric activity on the muscles with low 
levels of contraction. Low-level sEMG signals can be 
defined as the response of a muscle contraction during a 
movement realized by its own muscular group with less 
force as possible. Non-linear properties of sEMG can be 
estimated by techniques like fractal dimension, entropy 
or autocorrelation. The use of multichannel sensors can 

increase the number of hand and fingers commands. 
However, the addition of new channels increases the 
complexity and the processing time, being it a drawback 
for the user. Using only one sEMG channel with 
satisfactory results can reduce problems during the 
electrodes fixation and low computational cost. 
Nevertheless, it is needed to map the sEMG signals 
related to contraction from different muscles. Instead of 
the features related to signal amplitude (RMS, WL, 
MAV) which depend on electrode arrays, other methods 
based on time-scale like Discrete Wavelet Transform 
(DWT), Wavelet Package (WPT), or features based on 
fractals like Higuchi’s Fractal Dimension (HFD) or 
Detrended Fluctuation Analysis (DFA) are being used 
[5] [4]. DFA is one of the fractal techniques more used, 
combining advantages from time and frequency 
domains. Phinyiomark uses DFA to classify low level 
sEMG signals [5]. Eight gestures were classified with 
the wrist, hand and forearm using weak upper-limb 
sEMG signals for five channels. The individual finger 
movements were not taken into account in their work.  

In previous works, we presented the classification of 
individual finger movements and hand gestures at low 
contraction level [6]. This paper reports the study of a 
set of features, both in amputees and non-amputees, 
towards a reduced number of channels.  
 
Methods:  
 

Subjects – Five able-bodied subjects (AB), two men 
and three women, aged 23-35, performed the 
experiments described in this section. In addition, two 
amputees subjects (AM1, AM2), female aged 35 and 
male aged 60, respectively, volunteered to participate in 
this study. Both amputees have trans-radial two-third 
proximal amputation; A1 of the right forearm and A2 of 
the left one.  

sEMG recording procedure – sEMG data were 
acquired using bipolar electrodes, manufactured by 
Touch Bionic. These active electrodes have embedded a 
pre-amplification and electronic conditioning, with a 
60Hz notch filter and a variable gain. The sEMG signals 
were sampled (1 kHz) via an NI USB-6009 data 
acquisition system. The skin was previously cleaned 
with 70% alcohol, and conductive gel was used before 
attaching the electrodes. Four electrodes were placed on 
the following muscles: Ch 1 - flexor pollicis longus 
muscle; CH 2 - flexor digitorum superficialis muscle; 
Ch 3 - wrist flexors (flexor carpi radialis and flexor 
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carpi ulnaris muscles); Ch 4 - wrist extensors (extensor 
carpi radialis longus, extensor carpi radialis brevis and 
extensor carpi ulnaris muscles). Experiments were 
conducted following the ethical committee approval of 
the Federal University of Espirito Santo (UFES). The 
subjects were seated in a chair with both hands on a 
table and were trained before performing the tasks. For 
the experiment with amputees, training was performed 
with bilateral action with both hands.  

 
Table 1: Motor task performed in the experiments. 
 
Group Class Task Name 

A 

1 Rest state 

2 Little finger movement 

3 Ring Finger movement 

4 Middle Finger movement 

5 Index finger Movement 

6 Thumb finger movement 

B 

1 Rest state 

7 Wrist flexion 

8 Wrist extension 

9 All fingers flexion 

10 Hand grasp 

11 Pinch grip 

12 All fingers extension 

 
Each muscle activity was performed with five 

repetitions and maintained 5-6 seconds, followed of a 
background activity (rest state) of 4-5 seconds to avoid 
fatigue. Visual and oral cues were presented to perform 
each repetition for data synchronization. Experiments 
were repeated three times for the able-bodied volunteers 
and five times for the amputees on different days, for 
enhanced generalization capability for performing tasks. 
Amputees performed more experiments anticipating 
possible errors and reject data if it is necessary. The 
sEMG signals were recorded while the participants 
performed two groups of motor tasks with the hand, 
described in Table 1. The first one including individual 
finger flexion and the other one with grasps tasks and 
wrist flexion/extension. The rest state was included in 
both groups and was recorded as the first class. The 
background activity among each repetition was 
discarded for the analysis. 

Signal processing – The sEMG data were pre-
processed subtracting the DC level from each signal. 
The trials were reorganized by concatenating all the 
same movements. The muscle activity was identified for 
each repetition extracting the segments corresponding to 
the isometric contraction on the motor task. It was done 
by taking two seconds after started the motor tasks, until 
one second before starting the return to the rest state. An 
examiner was ensuring that the gesture was started with 
no more than 1 second after the cue, to avoid potential 
errors. A windowing function was used to compute the 
features according with the criteria in [7] where the 
response expected by the subject would be in no more 

than 300ms. A sliding window with 250 samples of 
length (250 ms) and an increment of 125 samples (125 
ms) for overlapping was applied for each channel. The 
duration of the analysis window was chosen to target 
real-time classification, by minimizing the delay 
between performed and decoded action. Frequently used 
time-domain and frequency-domain features presented 
in [8] were extracted (Table 2). Additionally, the DFA 
feature based on fractal analysis was computed.  

 
Table 2: Features extracted from sEMG signals. 
 

Domain No. Abbr. Feature 

Time 
Domain 

1 RMS Root mean square  

2 WL Waveform length  

3 VAR Variance of EMG  

4 MAV Mean absolute value 

5 MAV1 Mean absolute value type 1 

6 MAV2 Mean absolute value type 2 

7 SSC Slope sign change  

8 ZC Zero crossing 

9 ZC2 Zero crossing 

Frequency 
Domain 

10 MNF Mean frequency  

11 MDF Median frequency  

12 PKF  Peak frequency 

13 MNP Mean Power  

14 TTP Total power 

Fractal 
Dimension

15 
DFA Detrended Fluctuation Analysis 

 
The sequential forward selection (SFS) method was 

used to analyze the significance of the features in this 
study and to select an optimal set. It was performed for 
the two groups of volunteers. To distinguish the 
different gestures, three classifiers were selected due to 
their high performance in classification problems and 
low computational cost: LDA, k-nearest neighbors 
(KNN) and a multi class SVM.  For the multi class 
SVM, one against one method was implemented. The 
ANN classifier was repeated 10 times and then averaged 
in order to obtain generalized results. The classification 
for the different classes was computed in off-line mode 
considering the both groups mentioned before. In order 
to evaluate the classifiers, the error of misclassification 
was taken into account. A ten-fold cross–validation to 
validate the system and the classification accuracy was 
computed as an average accuracy based on the results 
from cross validation for 10 different training sets. 
Furthermore, Kappa coefficient purposed by Cohen, 
which represents the concordance between the targets 
and the prediction values, was computed. 
Experiments – Two different experiments were 
conducted. The first one, to determine the optimal set of 
features and to evaluate the combination of the sEMG 
channels towards a reduced single channel system. The 
purpose was to explore the different combination of 
features in relation to the final accuracy in recognition 
of hand gestures. The SFS method, which selects the 
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most significant feature maximizing the accuracy, was 
used firstly with all able-bodied volunteers’ data 
together, and later, with each amputee individually. As a 
result, the optimal configuration was obtained for four, 
three, two and a single channel, with the best set of 

features for each case. This process was performed for 
both groups of gestures in Table 1, using the KNN 
classifier because of its fast computation. In the second 
experiment the best sets of features were selected with 
the other classifiers using a four channel scheme. 

 
Table 3: Summary of results using SFS method for able-bodied and amputees. 
 

Group A   Group B 

Subj. 
Channels 

Features/ Error [%]   
Channels 

Features/ Error [%] 
4 3 2 1 4 3 2 1

AB 

0 1 0 0 
10 9 2 4 _

 

0 0 0 1
5 9 13 15 7

59 .89 49 .85 41 .71 39 .23 58 .85 42 .33 39 .99 38 .62 36 .84

1 1 0 0 
10 2 9 1 14

0 1 0 1
13 2 4 1 _  

42 .19 31 .47 24 .86 22 .69 22 .57 28 .60 18 .96 15 .31 15 .09   

0 1 1 1 
14 2 4 3 _

1 1 0 1
14 2 4  _  _ 

24 .35 14 .08 12 .09 12 .07 13 .44 7 .16 5 .84     

1 1 1 1 
14 2 4 3 _

1 1 1 1
14 2 4 3 _  

14 .54 8 .59 7 .20 7 .12 7 .51 5 .00 4 .31 4 .28   

A1 

1 0 0 0 
4 9 15 2 12

 

0 1 0 0
11 9 15 7 _

39 .63 32 .99 29 .67 27 .92 26 .90 39 .53 32 .44 26 .50 22 .55

0 1 0 1 
1 2 4 15 14

0 0 1 1
10 15 2 14 7

13 .57 11 .38 11 .04 10 .81 9 .91 16 .21 11 .64 10 .61 9 .80 9 .36

0 1 1 1 
1 2 7 15 13

1 0 1 1
2 15 13 12 7

8 .95 7 .44 6 .87 6 .58 5 .63 11 .05 9 .07 7 .05 6 .23 5 .99

1 1 1 1 
1 2 14 7 _

1 1 1 1
2 6 11 7 15

7 .15 5 .46 5 .07 4 .62 7 .09 5 .89 5 .65 5 .55 4 .87

A2 

0 0 0 1 
5 7 2 14 _

 

1 0 0 0
1 2 15 4 9

59 .17 47 .66 45 .29 43 .74 46 .37 42 .08 40 .10 38 .90 38 .78

1 0 0 1 
5 2 10 4 9

1 0 0 1
10 7 2 15 14

44 .64 32 .34 30 .95 30 .07 29 .80 34 .38 24 .09 20 .83 19 .94 18 .78

1 0 1 1 
11 9 4 2 10

1 0 1 1
13 4 2 7 10

30 .79 22 .97 21 .49 20 .34 20 .05 20 .12 15 .73 12 .82 12 .70 12 .28

1 1 1 1 
13 2 4 14 _

1 1 1 1
10 2 4 7 13

22 .41 18 .81 17 .39 17 .12 14 .85 11 .89 10 .44 10 .06 9 .17
 

Results and discussion 
 

The classifier’s overall misclassification error for the 
SFS method is summarized in Table 3. The presence of 
a channel is indicated by ‘1’ in the combinations 
showed. For each case of subjects, combinations with 
four, three, two and a single channel were selected 
based on the lower percentage error achieved. Feature’s 
numbers (according to the Table 2) corresponding to the 
channel combinations obtained follow by the error are 
presented. 

For individual finger recognition (group A), the 
errors were of up to 40% using a single channel for all 
of cases, with 27% for the amputee A1. For the able-
bodied (AB) the results showed a better performance by 
increasing the number of channels. The results for the 
amputee A1 were the best in all cases in comparison 
with A2 and AB, achieving a lower error than 10% with 
at least two channels. Most of cases, the SFS method 
achieved the lowest error with no more than 5 features, 
and for other cases the decrease in error were 
insignificant including more features. The WL (2) was 
in all of features combinations for this gestures 

recognition, followed by MAV (4), included 8 times, 
and TTP (14), included 7 times out of 12 different 
combinations. DFA (15) was included in combinations 
with three or less channels for A1.  

On other hand, gestures of group B, including grasps 
and wrist movements, showed a greater difference on 
increasing the number of channels in relation to the 
group A. Single channel had 37% of misclassification 
error for AB subjects, while adding a channel achieved 
15% using four attributes in the feature vector. The 
amputee A1 achieved error below 10% for dual channel, 
which is a significant result from this study. For A1 
subject, errors were similar to subjects AB, as for the 
three channels case where both group had error below 
6%. A2 had the lowest performance, but achieved error 
below 12% for three and four channels. Similar to the 
results obtained with gestures of the group A, WL was 
included to most of features sets, follow by DFA, which 
was in 7 cases. On the other hand, the sEMG channel 
related to the thumb flexor (Ch 1) provides relevant 
information for the separability of the classes for both 
groups of gestures according to the results. DFA feature 
was found to be relevant on the selection of features 
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with the study with the subject A1, since it was 
considered for the cases of three, dual and single 
channel for the gestures group A, and for all cases with 
group B. 

Based on the above, two sets of features with the 
most relevant parameters according SFS method results 
were selected to validate the system. The four set of 
features, shown in Table 4, were selected taking into 
account both groups A and B independently. Errors and 
kappa coefficient were computed for the four 
aforementioned classifiers. Results are summarized in 
Table 4. The results indicate that the sEMG signal 
analysis reported in this work using weak signals can 

accurately identify individual finger movements, in 
addition to grasps and hand gestures. ANN had the 
lowest error in most of the cases, followed by KNN, 
while LDA had the lower performance. The Kappa 
coefficient values with values above 0.8 represent an 
excellent concordance according to the Cohen’s criteria. 
The subject A1 had a high performance for both 
gestures groups, with error below 4.8% with features 
including DFA and an excellent concordance with ANN 
classification. The subject A2 had the lowest 
performance, although the error was 16.4% for group A 
and 10.2% for group B, with ANN, and an excellent 
concordance according to the Kappa value.  

 
Table 4: Summary of results of classification for able-bodied and amputees. 

    Group A Group B 
Features WL MAV TTP  DFA WL VAR MAV TTP WL MNP TTP DFA WL VAR MAV TTP 

Sub.   
Er. 

ANN LDA SVM KNN ANN LDA SVM KNN ANN LDA SVM KNN ANN LDA SVM KNN

AB 

4 .7 19 .5 5 .2 11 .3 7 .6 30 .9 6 .8 7 .3 4 .5 35 .2 4 .3 11 .0 4 .3 27 .2 3 .9 4 .2

k 0 .5 0 .3 0 .5 0 .4 0 .9 0 .6 0 .9 0 .9 0 .9 0 .6 0 .9 0 .9 0 .9 0 .7 1 .0 1 .0

A1 

Er. 4 .5 11 .8 6 .8 4 .6 5 .6 11 .5 4 .8 5 .7 4 .8 17 .8 5 .1 4 .5 5 .8 11 .4 5 .3 6 .8

k 0 .9 0 .9 0 .9 0 .9 0 .9 0 .9 0 .9 0 .9 0 .9 0 .8 0 .9 0 .9 0 .9 0 .9 0 .9 0 .9

A2 

Er. 21 .3 47 .4 20 .8 28 .7 16 .4 41 .3 16 .6 17 .1 15 .4 34 .2 11 .4 16 .8 10 .2 32 .9 7 .9 10 .6

k 0 .8 0 .4 0 .8 0 .7 0 .8 0 .5 0 .8 0 .8 0 .8 0 .6 0 .9 0 .8 0 .9 0 .6 0 .9 0 .9
 
Conclusion 
 

This study presents results on decoding two groups 
of hand gestures, the first one including individual 
finger flexion, and the other one with grasps tasks and 
wrist flexion/extension. We considered weak sEMG 
signals during the experiments in order to achieve a 
suitable and natural control system for the amputees. A 
study to determine the best set of feature was conducted, 
for all subjects, to compare the results. Although there 
were differences in the features obtained for both kinds 
of volunteers, we show a high performance for all cases. 
We have shown that a high level of decoding accuracy 
above 90% can be achieved using an ANN classifier, for 
both able-bodied an amputees. The results for the 
amputees were validated independently, due to the 
difference on the data and performance achieved. This 
may be related to the time since amputation, which may 
interfere in the remaining patterns on the muscles in the 
stump. The reduction of the numbers of channels caused 
decreased in the accuracy of classification. However, 
the results are significant considering that the study of 
information reduction is quite challenging.  
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