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Abstract: This paper presents an application of the 
Boundary Element Method (BEM) as a tool for 
elastographic studies. In this area, one of the most used 
methods is the Finite Element Method (FEM), which 
needs a mesh over the whole domain of the image being 
analyzed. In the proposed study, the BEM needs only 
the contour of each structure present in the image, 
resulting into a more efficient pre-processing, smaller 
and better conditioned matrices and faster inverse 
problem analysis when compared to FEM. The 
proposed methodology is applied to mathematical 
phantoms and the results obtained are compared with 
FEM. 
Keywords:  Boundary element method, Finite element 
method, Elastrography, Complex variable analysis. 
 
Introduction 
  

Elastography is a method that can be used in any 
tissue system that is imaged by ultrasound and which 
can be subjected to a small static or dynamic 
compression. The compression may be applied 
externally or internally by any physiological 
phenomena, such as pulsating arteries, respiration or 
any other mechanical stimulus. The resulting strains are 
used to estimate the material properties of the tissues 
being analyzed. Elastography is a non invasive 
technique, it can be applied for example, to breast 
cancer detection, since tissues abnormalities are 
associated with changes in the mechanical properties. 

One of the most used methods for displacements 
estimation is the cross correlation technique [1].   Some 
authors also present alternative methods for 
displacements mapping [1, 2]. A main characteristic of 
these approaches is that they present only a strain 
analysis, which can be insufficient to characterize the 
tissues present in the image. 

Some numerical methods can be used in order to 
determine the mechanical properties of the tissues being 
imaged. Guo et. al. [3] presents a methodology for 
elastography using the Finite Element Method (FEM) 
and inverse problem analysis. Baldewsing  et. al. [4] and 
Moraes et al. [5] also use FEM to perform their studies 
in elastography.  The main problem with FEM is that it 
needs a mesh over the whole domain of the problem, 
leading to great coding effort to create the mesh, and for 
a fine grid of elements, it is time and memory 

consuming for generating the meshes and for 
simulations. 

Another approach to overcome these problems is to 
consider the Boundary Element Method (BEM). The 
BEM is a numerical technique used to solve boundary 
value problems by discretizing only the contour of the 
domain. It has many practical applications in many 
areas of Mathematical Physics, such as Continuum 
Mechanics, Acoustics and Electromagnetism [6]. It uses 
only a mesh over the boundaries of the problem, which 
in the present case, can be obtained easily by manual 
segmentation or some reliable border detection 
algorithm such as Canny, instead of awkward and time 
consuming algorithms to create mesh grids over an 
image. BEM also results into smaller and better 
conditioned matrices when compared to FEM. 

In this paper we propose a new methodology for 
elastography based on BEM, which includes 
simulations using mathematical phantoms. A 
comparison of the computational cost and convergence 
rate between BEM and FEM in to solve the same 
problem is also presented. 
  
Materials and methods 
 

The Boundary Element Method -  
In order to perform the elastographic study, the BEM 

is applied to the equilibrium force equation, and with 
the constitutive and the strain-displacement relation, it 
results in the Boundary Integral Equation (BIE), given 
by Equation 1. 
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In Equation 1,  is the boundary of the domain, the 

value of Cik() depends on the local geometry of  at , 
t(x) and u(x) are the surface tractions and displacements, 
T(x, ) and U(x, ) are the fundamental solution for 2D 
stress and displacements;  They represent the tractions 
and displacements in the i-th direction at x due to an 
unity load line in the i-th direction applied in , in a 
plane homogeneous infinite body. Details about the 
derivation of these equations can be found at [4].  By 
dividing the surface  into Nel boundary elements, the 
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surface tractions and displacements can be interpolated 
in each element el using shape functions, as in 
Equations 2 and 3. 

 
    ijtxjN=xit


                       (2) 
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                       (3) 

 
In Equations 2 and 3, j is the j-th interpolation 

function used to describe the variable field and tij and uij 
are the nodal values of tractions and displacements. 

Substituting Equations 2 and 3 into Equation 1 
results in the discretized form of BIE, Equation 4. 
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A linear system of equations relating the tractions 

and surface displacements is obtained by varying the 
source point  over the surface , as in Equation 5. 

 
     tG=uH                            (5) 

 
For the proposed problem, constant shape function 

was chosen, i.e.,   1=ξN , which means that the 

variables (tractions and surface displacement) are 
considered to be constant over the element and 
discontinuous between two adjacent elements. 

Discontinuous elements are characteristic of BEM, 
and they allow an efficient parallel computational 
treatment, since the BEM code is implemented in a 
General Purpose Graphics Processor Unit (GpGPU – 
GeForce GTX 690) using Compute Unified Device 
Architecture (CUDA) and MatLab [7]. In this case, each 
element sub matrix can be evaluated in a thread and 
there is no need for matrix assembly. 

After imposing the boundary conditions of tractions 
and displacements into Equation 5, the resulting linear 
system (Eq. 6), is solved for the unknown vector {x}, 
which may contain both unknown tractions and 
displacements. 

 
[ A]{x}= {b}                                (6) 

 
Mathematical Phantoms – Mathematical phantoms 

can be used in order to simulate soft tissues for the 

proposed study. In this paper, a phantom with a cross 
section of 50x50mm were considered, having 3 circular 
inclusions each one of them with a different Young's 
modulus but with the same Poisson ratio of  = 0.495 
for all the materials considered [8] (Figure 1). 

 

 

 

 

Figure 1: Mathematical phantoms with three 
inclusions. 

 
For the proposed models, the Young's modulus of 

the background is Eback = 20KPa, and r1 = 1.5mm, r2 = 
6.5mm and r3 = 4mm, Einc1 = 25KPa, Einc2 = 600KPa 
and Einc3 = 750KPa, placed in (x1, y1) = (14, 14)mm, (x2, 
y2) = (25, 25)mm and (x3, y3) = (34, 34)mm. 

Nodes were placed around the contour of each 
structure, i.e., plaque and inclusions, and boundary 
element and finite element meshes were created in order 
to compare the results. 

The finite element meshes were created using the 
boundary nodes and the software Gmsh [9], and linear 
first order finite element triangles were used as shape 
functions. 

In order to simulate the mechanical behavior of the 
proposed phantoms and generate data for the 
elastographic study, a load of 10KPa was applied at the 
top of each phantom and the bottom is fixed, avoiding 
displacements in x and y directions, as shown in Figure 
(2). 

 
 
 
 

 
Figure 2: Boundary conditions. 
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Simulations were carried out using both BEM and 
FEM, also implemented in GpGPU [10]. 

 
Complex Variable Analysis and Inverse Problem 

– In order to evaluate the derivatives needed for the 
inverse analysis problem, a complex variable approach 
is used. It is summarized in Equation 4 
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j is the complex unity and  *  is the imaginary 

component of f(y) evaluated at  = i + jh. 
In the proposed study, h = 10-6 was used. The main 

advantage of this approach is that it results in semi 
analytical derivatives, which avoids round off errors [9]. 

The Young's modulus for each component was 
estimated using an iterative approach. 

Equation 1 is evaluated using an initial estimative of 
Ei = 1KPa for every Young modulus in the problem.  
For each interaction, the reminder is evaluated as 
described in [11].  

 
Results – The proposed phantom in Figures 1 were 

simulated using both BEM and FEM as described in this 
paper. The phantom is used to simulate the behavior of 
soft tissues with inclusions and different values of 
Young's moduli for each inclusion. 

The displacement fields obtained by the simulations 
were used as input data for the proposed methodology 
in order to investigate the accuracy of the inverse 
problem analysis. The results obtained were compared 
to those obtained by FEM analysis, showing a better 
convergence rate or at least, the same convergence rate. 

The convergence for Young's moduli for the 
proposed phantom in Figure 1 are presented in Figure 3, 
considering a minimum tolerance of 10-6 and sixteen 

iterations; The displacement field used as input for the 
proposed methodology  is presented in Figure 4. 

 

 

Figure 4: Displacement field for phantom of Figure 1. 

 
 Table 1 compares the computational cost 

considering the number of elements in BEM and FEM 
meshes for each phantom. 

 
N. of 

Inclusions 
 BEM 

analysis (s) 
N. of 

Boundary 
Elements 

FEM 
analysis (s) 

N. of Finite 
Elements 

1 0.3493 68  1.6797 416 

2 2.6059 200 32.9371 2030 

3 9.5541 260 73.6151 2664

 
Discussion and Conclusion 
  

Considering sixteen iterations and an error of  10-6, 
both FEM and BEM show the same profile of 
convergence, but BEM tends to approach the correct 
value faster than FEM in some cases, as can be 
observed in Figure 4. 

Observing the computational cost for the analysis, 
presented in Table 1, BEM can be 4.8 up to 12 times 

 
 

Figure 3: Convergence rate for the phantom in Figure 1. 
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faster than FEM, since it uses 6.11  up to 10.24 times 
fewer elements, and there is no need for matrix 
assembly, as stated earlier in this paper, due to the use of 
discontinuous elements. 

The mesh generation must be considered too. 
Generating a boundary element mesh consists in placing 
nodes around the contours of every structure present in 
the image and connecting those points in a sequential 
manner, while in finite element mesh generation, 
complex meshing algorithms must be used. 
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