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Abstract: Automatic methods for quantifying velocity in 

cardiac images can be used to diagnose diseases, but 

the estimated velocity suffers from blurring in the region 

of motion discontinuities when using variational 

methods.  In this paper, spatially varying filters were 

used to improve accuracy in these regions.  These filters 

depend on: (i) image intensity and (ii) velocity estimates 

from previous iterations of the update equation.  

Methods were extended to voxel space, tested with 

synthetic images, and parameters optimized. The 

spatially varying filter which depends on velocity 

estimates was found to provide the greatest reduction in 

error measures, but the benefits were found to depend 

on careful choices of derivative scheme and other model 

parameters. 

Keywords: Optical flow, automatic quantification, left-

ventricular motion, spatially varying averaging filters 

 

Introduction 

 

Cardiac pathologies, such as Ventricular Dyssyn-

chrony, Ischemia or Noncompaction Cardiomyopathy, 

can produce changes in the normal motion of the left 

ventricle.  Accurate quantification of movement can 

therefore assist in the diagnosis of these pathologies.  

Automatic methods for quantification are used due to 

the complexity and size of the images, objectivity, 

speed, and cost considerations.  The variational Optical 

Flow (OF) technique proposed by Horn and Schunck 

[1], extended to voxel space, is a possible method for 

motion quantification, whereby the true motion field is 

estimated from a sequence of three-dimensional images 

(4D, meaning 3D plus time).  Although the method is 

fast and simple, inaccuracies in velocity estimation are 

exaggerated at motion boundaries, the surfaces between 

neighbouring volumes where discontinuities in regional 

velocity are encountered.   

Gauss-Seidel (GS) update equations can be used for 

iterative solution of the OF linear equations to produce 

the velocity field [1].  These equations, extended to 

voxel space, have the form shown in equation (1). [2] 

shows equations for the three velocity components, but 

for brevity only the x component of velocity is shown: 

𝑢𝑘+1 = �̅�𝑘 −
𝐸𝑥(𝐸𝑥�̅�𝑘+𝐸𝑦�̅�𝑘+𝐸𝑧�̅�𝑘+𝐸𝑡)

𝛼2+𝐸𝑥
2+ 𝐸𝑦

2+ 𝐸𝑧
2

             (1) 

where k is the iteration index; �̅�, �̅�, �̅�  are mean 

velocities in x, y, z; 𝐸𝑥, 𝐸𝑦, 𝐸𝑧 are partial derivatives of 

image intensity E(x,y,z,t) and 𝛼2  is a regularization 

parameter. In Horn and Schunck’s paper [1] the mean 

velocities are calculated using a set of fixed filter 

coefficients, which mixes velocity values when applied 

to motion boundary pixels (Non-Adaptive Method, 

NAM).  An alternative is to use Spatially Varying Filters 

(SVFs), where the pixels used to calculate mean values 

are selected according to: (i) intensity values of the 

image using an Adaptive Intensity Method (AIM); (ii) 

evolving velocity characteristics using an Adaptive 

Velocity Method, (AVM) [3].    

The objectives of this paper are to investigate and 

quantify possible improvements in OF accuracy in 4D 

images when using SVFs (AIM and AVM), compared to 

a fixed weight averaging filter (NAM), and to determine 

the conditions under which improvements are 

maximised.  For this preliminary study, textured 

cylinders in rotation and translation were used, but our 

future aim is to study these improvements using XCAT 

phantom data [4].  XCAT is a 4D extended cardiac-torso 

phantom, able to produce realistic imaging data. It also 

produces frame-by-frame voxel positions, from which 

Ground Truth (GT) velocity estimates can be obtained. 

These are expected values of velocity, from which error 

in the OF can be calculated.  

 

 Materials and methods 

 

An extension of the Horn and Schunck algorithm to 

voxel space was developed in MATLAB 2013a.  The 

model was changed to accommodate the following 

schemes for derivatives and mean velocities. 

Schemes for estimating derivatives – two schemes 

using kernel convolution were implemented: i. Simple 

Kernel (SK), [-1, 0, 1] in x, y, z, and t; ii. Simoncelli’s 

Matched/ Balanced kernels (MB) [2]. Volumes were 

padded with mirrored values before convolution. 

Schemes for calculating mean velocity - three 

schemes were implemented:   

1. NAM provides a baseline comparison for the 

adaptive algorithms, and uses convolution with a fixed 

kernel to provide a weighted average over the 18 

neighbourhood: 
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�̅�𝑖,𝑗,𝑘 =
1

9
(𝑢𝑖+1,𝑗,𝑘 + 𝑢𝑖−1,𝑗,𝑘 + 𝑢𝑖,𝑗+1,𝑘 + 𝑢𝑖,𝑗−1,𝑘 +

𝑢𝑖,𝑗,𝑘+1 + 𝑢𝑖,𝑗,𝑘−1) +
1

36
(𝑢𝑖+1,𝑗+1,𝑘 + 𝑢𝑖−1,𝑗+1,𝑘 +

𝑢𝑖+1,𝑗−1,𝑘 + 𝑢𝑖−1,𝑗−1,𝑘 + 𝑢𝑖+1,𝑗,𝑘+1 + 𝑢𝑖+1,𝑗,𝑘−1 +

𝑢𝑖−1,𝑗,𝑘+1 + 𝑢𝑖−1,𝑗,𝑘−1 + 𝑢𝑖,𝑗+1,𝑘+1 + 𝑢𝑖,𝑗−1,𝑘+1 +

𝑢𝑖,𝑗+1,𝑘−1 + 𝑢𝑖,𝑗−1,𝑘−1)                                                (2) 

where i,j,k are the coordinates of the central voxel. 

2. AIM uses formulae extended to 3D sequences from 

[5], with values calculated over the 26 neighbourhood. 

The smoothing filter,  𝜙𝐼 , calculates �̅�, �̅�, �̅�  depending 

on the intensity difference between the central voxel, i, 

and each of the 26 neighbours (𝑗 ∈ 𝑁𝑖). 

𝜙
𝐼

= ∑ 𝛾
𝑗
𝜇

𝑗𝑗∈𝑁𝑖
                              (3) 

where 𝛾
𝑗
 represents the contribution of a voxel, j, in the 

neighbourhood of central voxel i, and 𝜇
𝑗
 represents one 

of the velocities 𝑢𝑗, 𝑣𝑗, 𝑤𝑗, which is being averaged.  

The normalized value of 𝛾
𝑗
 for a neighbouring voxel is 

calculated using equation (4), where 𝐼𝑖 is the intensity of 

the central voxel and 𝐼𝑗 the intensity of the jth voxel.   

𝛾
𝑗

=

1

1+|𝐼𝑗−𝐼𝑖|

∑   
1

1+|𝐼𝑗−𝐼𝑖|
26
𝑗=1

                              (4) 

3. AVM was extended to voxel space from [5].  The 

filter has the same form as equation (3) with filter 

coefficients calculated using equation (5): 

𝛾
𝑗

=
(1+|𝜇𝑗−𝜇𝑖|)

−𝛽

∑ (1+|𝜇𝑗−𝜇𝑖|)
−𝛽

26
𝑗=1

                            (5) 

where 𝛽>1, and 𝜇
𝑖
 and 𝜇

𝑗
 represent one of the velocities 

u, v, or w. 𝛽 accounts for possible small differences in 

the velocity values [3], and optimum values of 𝛽 were 

found empirically. Three values of 𝛽  were tested, 

referred to as AVM5, AVM6, AVM7, where 𝛽 takes the 

value of 5, 6, 7 respectively. 

Generation of synthetic images and 

corresponding ground truth velocities - Synthetic 

image sequences of a textured cylinder in rotation and 

translation were generated against a non-textured 

background [6].  The constant term for the texture was 

0.5 and the amplitude for the sinusoids was 0.25, 

creating a texture varying between zero and one. The 

image background was set to zero.  Total image 

dimensions were 74 by 74 by 5 (x, y, z), with a cylinder 

of radius 28 and height 5 voxels.  Figure 1 shows a 

volume rendering of a single frame. 

Five image sequences for the cylinders were used as 

shown in Table 1.  Frames 1 to 5 were used for the MB 

scheme and frames 2 to 4 for SK, the result being 

calculated only at frame 3. For each image sequence, a 

total of 120 tests were performed, permutations of 5 

averaging methods (NAM, AIM, AVM5, AVM6, 

AVM7), 2 methods for calculating derivatives (SK and 

MB), 3 values of iteration (50,100,150) and 4 values of 

𝛼2 (0.2, 0.5, 1.0 and 1.5), producing a total of 600 tests. 

GT velocities were generated for each image. 

 

Table 1: Image sequences used in the tests. 

Sequence 1 rotation of 1 degree per frame 

Sequence 2 rotation of 2 degrees per frame 

Sequence 3 rotation of 5 degrees per frame 

Sequence 4 translation of (u,v,w) = (1, 0, 0) 

Sequence 5 translation of (u,v,w) = (1, 1, 0) 

where u, v, and w are velocities in x, y, z directions. 

 

 
Figure 1: Single frame of the cylinder used in the tests. 

 

Error measures were defined to quantify differences 

between method and GT velocities. Root Mean Square 

Error (RMSE) and Normalized RMSE (NRMSE) were 

calculated according to equations (6) and (7): 

 

𝑅𝑀𝑆𝐸 =  √
∑ [𝜖𝑢(𝑖,𝑗,𝑘)2+𝜖𝑣(𝑖,𝑗,𝑘)2+𝜖𝑤(𝑖,𝑗,𝑘)2]

𝐼,𝐽,𝐾
𝑖,𝑗,𝑘=1

𝐼𝐽𝐾
      (6) 

𝑁𝑅𝑀𝑆𝐸 = 100√
∑ [𝜖𝑢(𝑖,𝑗,𝑘)2+𝜖𝑣(𝑖,𝑗,𝑘)2+𝜖𝑤(𝑖,𝑗,𝑘)2]𝐼,𝐽,𝐾

𝑖,𝑗,𝑘=1

∑ [{𝑢𝑔𝑡(𝑖,𝑗,𝑘)}
2

+{𝑣𝑔𝑡(𝑖,𝑗,𝑘)}
2

+{𝑤𝑔𝑡(𝑖,𝑗,𝑘)}
2

]
𝐼,𝐽,𝐾
𝑖,𝑗,𝑘=1

 (7) 

where the image is of dimensions I by J by K voxels, i, 

j, k, are velocity vector coordinates in voxel space, uGT, 

vGT, wGT GT velocities, 𝜖𝑢, 𝜖𝑣 and 𝜖𝑤 are errors between 

method and ground truth velocities. 

 

End-Point Error (EE) and Angular Error (AE) were 

calculated according to equations (8) and (9), then 

Average EE and AE (AEE and AAE) calculated both 

globally and Within Volume (WV), meaning inside the 

cylinder volume.  

 

EE = √(𝑢 − 𝑢𝐺𝑇)2 + (𝑣 − 𝑣𝐺𝑇)2 + (𝑤 − 𝑤𝐺𝑇)2  (8) 

AE =cos−1 (
𝑢.𝑢𝐺𝑇+𝑣.𝑣𝐺𝑇+𝑤.𝑤𝐺𝑇

√𝑢𝐺𝑇
2 +𝑣𝐺𝑇

2 +𝑤𝐺𝑇
2  √𝑢2+𝑣2+𝑤2

)            (9) 

 

AE was set to zero if the magnitude of either vector 

was below the threshold 0.001 to avoid indeterminate 

values, meaning that all AE values outside the cylinder 

volume are zero.  AAE is therefore not a global measure 
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in the tests, and while included for completeness, cannot 

be directly compared with other global errors presented. 

 

Results 

 

All statistics were calculated from raw values of OF, 

with no post-smoothing applied.  In all cases the AVM 

that minimised NRMSE was selected as the best 

representative of AVM5, AVM6, AVM7 and presented 

alongside NAM and AIM. 

Table 2 shows results obtained for Sequence 1 using 

derivative estimation methods SK and MB and 

averaging methods NAM, AIM and AVM for 50 

iterations and optimum 𝛼2.  

 

Table 2 Best results obtained for frame 3 of Sequence 1 
   Global Within volume 

measure  method SK MB SK MB 

NRMSE 

(%) 

 NAM 31.1 32.8 17.4 12.3 

 AIM 34.0 36.3 16.5 12.1 

 AVM7 28.5 33.0 17.0 12.7 

       
RMSE 

(voxels) 

 NAM 0.072 0.075 0.040 0.028 
 AIM 0.078 0.084 0.038 0.028 

 AVM7 0.065 0.076 0.039 0.029 

       
AEE 

(voxels) 

 NAM 0.044 0.041 0.021 0.009 
 AIM 0.051 0.049 0.021 0.010 

 AVM7 0.043 0.043 0.020 0.010 

       
AAE 
(°) 

 NAM 0.0069 0.0058 0.0069 0.0058 

 AIM 0.0060 0.0052 0.0060 0.0052 

 AVM7 0.0062 0.0056 0.0062 0.0056 

 

For SK, AVM7 provided best global values for 

NRMSE and RMSE with 𝛼2=0.2 and 50 iterations, AEE 

with 𝛼2 of 0.5 and 50 iterations and AAE with 𝛼2 1.5 

and 150 iteration.  For MB, lowest global values of 

NRMSE, RMSE, AEE were found with the averaging 

algorithm NAM with 𝛼2=0.2 and 50 iterations, while 

AIM provided lowest AAE with 𝛼2 =0.2 and 150 

iterations.  Overall SK produced lower errors than MB. 

Figure 2 compares the accuracy of the OF 

algorithms using two global error measures, NRMSE 

and AEE for MB derivatives.  NAM produced only 

slight improvement over AVM7 for 50 iterations and 

𝛼2=0.2. AIM produced results with the highest error.  

As 𝛼2 increases, the difference between the methods is 

less pronounced. 

For Sequence 2 lowest global errors were produced 

by AVM7 for NRMSE, RMSE and AEE with SK and 

𝛼2 =0.5, and 50 iterations, whereas lowest AAE was 

produced by AIM with MB, 𝛼2 = 1.5 and 50 iterations.  

For Sequence 3, optimum results were found with 

AVM5 combined with SK as shown in Table 4.  The 

combination minimised NRMSE, RMSE, AEE, AAE to 

44.7%, 51.6%, 0.32 voxels and 0.034° respectively. 

The optimum combination for Sequence 4 was 

found with AVM7 and the SK derivative scheme. Table 

3 shows the best results obtained. 

The optimum combination for Sequence 5 was 

found with AVM5 and SK derivatives.  However, errors 

for AVM7 were only 2% larger for NRMS and 1.7% 

smaller for AEE than AVM5. 

 

Discussion 

 

Figure 2 shows that NRMSE is strongly dependent 

on the value of 𝛼2 for rotation and translation.  Lower 

values of 𝛼2 produce much lower error and, in the case 

of SK, produce a larger difference between averaging 

methods.  A lower value of 𝛼2 places confidence in the 

derivatives rather than the smoothness of the OF, which 

seems reasonable in the situation where flow is 

discontinuous at the motion boundary. 

 

 

 
Figure 2: Global NRMSE against 𝛼2 for Sequence 1 

with 50 iterations and averaging methods NAM, AIM 

and AVM7 for (a) MB (b) SK derivatives scheme.  

 

Table 3: Best results obtained for frame 3 of Sequence 4 

 

Table 4: Optimum model combinations by sequence 
Image 

Sequence 
Method 

NRMSE 

𝛼2, iter 

RMSE 

𝛼2,iter 

AEE 

𝛼2,iter 

Derivative 
scheme 

1 AVM7 0.2,  50 0.2, 50 0.5, 50 SK 

2 AVM7 0.5, 50 0.5, 50 0.5, 50 SK 
3 AVM5 0.5, 50 0.5, 50 0.5, 50 SK 

4 AVM7 0.5, 50 0.5, 50 0.5, 50 SK 

5 AVM5 0.5, 100 0.5, 100 0.5, 100 SK 

 

For sequences 1 to 4, NRMSE, RMSE and AEE 

were minimized with 50 iterations.  A larger number of 

iterations creates increased diffusion of OF across the 

motion boundary, and OF outside of the volume is 

heavily penalised by the error measures. For Sequence 

5, where optimized errors were generated with 100 

iterations, the velocity is larger and perhaps requires 

more iterations to converge to this larger value of OF. 

  Global Within volume 

measure method SK MB SK MB 

NRMSE 
(%) 

NAM 32.3 37.5 1.7 5.6 

AIM 34.3 39.3 1.6 5.2 

AVM7 20.6 33.3 1.8 5.4 

      
RMSE 

(voxels) 

NAM 0.216 0.251 0.011 0.0004 

AIM 0.230 0.263 0.011 0.0004 

AVM7 0.138 0.223 0.012 0.0004 
      

AEE 

(voxels) 

NAM 0.119 0.147 0.0024 0.011 

AIM 0.135 0.158 0.0025 0.011 
AVM7 0.033 0.128 0.0008 0.010 

      
AAE 

(°) 

NAM 0.0013 0.0045 0.0013 0.0045 

AIM 0.0013 0.0042 0.0013 0.0042 

AVM7 0.0003 0.0040 0.0003 0.0040 
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The choice of derivative scheme was seen to have an 

effect on the error measures.  The global measures show 

that SVFs offer little or no improvement over NAM 

when using MB, but when using SK a substantial 

improvement of accuracy for AVM is obtained.  MB 

provides a larger neighbourhood of points for the 

derivative estimate, smoothing noise, but the derivative 

become less representative of local changes.  MB would 

seem to be more appropriate for smoothly changing 

image regions than close to motion boundaries, where 

the derivative estimate mixes distinct image regions. 

Future work might investigate an adaptive algorithm for 

differentiation, which bases estimates on local image 

statistics. 

Equation (1) shows that a smaller value of 𝛼2 

decreases the contribution of the smoothness term to 

evolving OF.  OF can be accurate at the motion 

boundary only when the average values and derivatives, 

which constitute the second term, accurately represent 

this part of the image. 

WV results for the MB scheme are consistently 

better than those of SK for sequence 1; the magnitude of 

error generated at the motion boundary is larger than 

that generated within the volume, resulting in superior 

global performance of the SK derivative scheme.  
AIM outperformed AVM or NAM only in Sequence 

2, where it produced the lowest AAE value. [5] 

similarly showed that AIM produced inferior results to 

AVM, although different error measures were used.   

For the sequences studied, optimum combinations 

were achieved using AVM7, SK derivatives scheme, 50 

and 100 iterations and 𝛼2 between 0.2 and 0.5.   

 

 
Figure 3: a) 3d rendering of XCAT myocardium show-

ing a representative transaxial slice; b) Transaxial slice 

of XCAT left ventricle during systole with optical flow 

superimposed, calculated using AVM7, 50 iterations of 

algorithm and 𝛼2=0.2. 

 

Limitations of the study – the tests presented used 

synthetic images, which are similar to cardiac image 

sequences only in terms of general motion (rotation and 

translation).  Future studies will extend the proposed 

method to cardiac XCAT images, determining optimum 

settings for the spatially varying filters and other model 

parameters.  Figure 3a shows a volume from an XCAT 

sequence and Figure 3b shows OF for a transaxial slice 

of the XCAT sequence in systole, calculated using the 

optimal combination of methods and parameters found 

in this study, SK, AVM7, 50 iterations and 𝛼2=0.2.   

Noise was not added to the synthetic images, which 

limits the importance of any findings, since images in 

Nuclear Medicine are degraded by noise, in particular of 

type Poisson.  It is possible that the advantages of using 

SK do not outweigh MB kernels when noise is present 

in the images. 

Contributions of this research to state of the art – 

This study showed potential benefits of extended SVFs 

to 4D cardiac sequences through their application to 

synthetic images with cylinders, and applied statistical 

analysis to determine the optimum parameters and 

schemes.   

 

Conclusion 

 

AVM produced the best global results compared to 

NAM and AIM.  Lowest errors were found with a lower 

number of iterations, low value of 𝛼2  and using SK 

derivative scheme. However, when AVM is paired with 

MB derivatives, the improvement disappears.  Error 

increases as 𝛼2 and number of iterations is increased. 
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