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Abstract: Cortical thickness is an important surrogate 
biomarker for evaluating the progression of 
neurodegenerative diseases. We propose a new method 
for measuring cortical thickness changes on longitudinal 
magnetic resonance images (MRIs). The method is 
voxel-based for computational efficiency and sensitivity 
to subtle changes, but aims for robustness in 
establishing correspondences by using intuitive features 
that are defined on a cortical skeleton computed in each 
scan. In contrast to existing longitudinal methods, the 
proposed method does not require deformable 
registration. Instead, we use cortex specific matches and 
fuzzy correspondence, which allows a skeletal point in 
one scan to be partially matched to multiple points in 
another scan, thereby enhancing the stability of the 
matches. Our experiments show that the proposed 
method is comparable in scan-rescan reproducibility 
with a state-of-the-art surface-based method, and 
demonstrates greater sensitivity to clinically relevant 
changes on a dataset containing MRIs of 100 secondary 
progressive multiple sclerosis subjects.  
Keywords: Cortical Thickness, Atrophy, Longitudinal 
Measurement. 
 
Introduction 
  

Thinning of the cortex has been linked to various 
neurological disorders such as multiple sclerosis (MS). 
A robust and sensitive method for measuring 
longitudinal changes in cortical thickness using 
magnetic resonance imaging (MRI) is highly desirable. 
However, there are several key challenges involved. The 
typical acquired MRI resolution for cortical analysis  (1 
mm3) is coarse relative to the mean cortical thickness 
(2.5 mm [1]), resulting in a large partial volume effect.  
In addition, the annual thickness change is small (~1% 
[2]) for secondary progressive MS (SPMS). 

A number of approaches have been proposed for 
cortical thickness measurement, and most aim to 
achieve a balance between robustness, typically 
achieved through some form of regularization, and 
sensitivity to real change. Surface-based methods (e.g., 
[2,3]), which typically create two triangulated meshes 
for the inner and outer cortical surfaces of each scan, are 
a relatively successful class of methods due to their 
ability to enforce certain constraints such as smoothness 
and topology during surface reconstruction, which 
reduces the impact of noise and minor segmentation 
errors. However, surface reconstruction is 

computationally very expensive, with current methods 
taking 12 to 30 hours to process a subject [2,3]. In 
contrast, voxel-based methods, which can perform 
measurements directly on the grey matter (GM) 
segmentation, are generally much faster. However, 
voxel-based methods do not have the benefit of a 
regularizing surface, and therefore can be less accurate 
and reproducible than surface-based methods [1]. 

A number of methods have been proposed 
specifically for processing longitudinal data, with the 
idea that using multiple scans across time would 
increase the signal-to-noise ratio in unchanged areas, 
while the real changes would be detected with greater 
sensitivity. Longitudinal processing requires 
establishing anatomical correspondence across time, and 
most current methods use deformable registration for 
this purpose (e.g., [3,4]). While longitudinal methods 
have shown advantages over otherwise comparable 
cross-sectional methods, deformable registration has its 
disadvantages in that the choice of registration method 
and parameters can be confounding factors. 

We propose a new voxel-based method called LCT 
(Longitudinal Cortical Thickness), for measuring 
longitudinal changes in cortical thickness between pairs 
of scans. Rather than a general alignment approach like 
deformable registration, the proposed method only 
matches points in the cortex using three intuitive 
positional and shape features that are defined on a 
cortical skeleton computed on each scan. To improve 
the stability of the matches, we use fuzzy 
correspondence in which each point in one scan can 
partially match several points in the other scan. After 
computing the matches between the two skeletons, the 
thickness measurements are performed by integrating 
GM probabilities along common directional vectors 
computed using both scans. We validate the method by 
applying it to a small reproducibility dataset and a large 
clinical dataset and comparing the global and lobe-level 
thickness results with those produced with a state-of-
the-art method, FreeSurfer [3]. 
 
Materials and methods 
  

To evaluate the proposed method, we applied it to 
two longitudinal datasets of 3D T1-weighted brain 
MRIs: 1) images from 15 subjects with two scans each, 
acquired an hour apart, to measure scan-rescan 
reproducibility, 2) images from a completed multi-
center clinical trial in SPMS, consisting of 100 
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randomly selected subjects, each with two scans 
acquired two years apart, to measure sensitivity to real 
changes and their correlations to clinical parameters. 
The voxel sizes have ranges sx = 0.99 to 1.20 mm, sy = 
0.98 to 1.24 mm, and sz = 0.93 to 1.24 mm, but all scans 
were resampled to have 1 mm isotropic voxels as part of 
preprocessing. The mean age of the subjects was 49.5 
years. The MS functional composite (MSFC), a widely 
used MS clinical score composed of 3 subscores: 25-
Foot walk (T25W), Paced Auditory Serial Addition Test 
(PASAT) and 9-Hole Peg Test (9-HPT), was used to test 
the clinical relevance of the results. 
 
Proposed method 
 

A number of preprocessing steps are applied before 
the thickness measurement. First, the non-parametric 
non-uniformity normalization (N3 [5]) algorithm is used 
for inhomogeneity correction in each image separately. 
Each pair of scans are then rigidly registered to each 
other using symmetric transformations to a midpoint, 
then a paired inhomogeneity correction [6] is applied to 
minimize the remaining differences in the bias fields. 

Next, skull-stripping is performed using two 
methods: the Brain Extraction Tool (BET [7]) and the 
skull-stripping program in FreeSurfer (mri_watershed). 
We found that both occasionally leave extraneous tissue, 
and that intersecting the two masks largely resolves this 
problem. Next, cerebellum exclusion is performed on 
each scan by affinely registering to an atlas with a 
manually segmented cerebellum and transferring the 
label onto each scan. The brain images are segmented 
using an expectation maximization and hidden Markov 
random field approach (FAST [8]) to obtain the 
probabilistic classification of GM. The non-cortical GM 
is then removed by processing each axial slice 
independently and keeping the largest connected 
component near the skull and rejecting any smaller 
disconnected components within. 

Thickness change computation – The core of the 
algorithm consists of the following steps: 1) compute a 
skeletal representation of the cortical GM in each scan; 
2) compute fuzzy correspondences between the scans on 
the skeletal points; 3) for each pair of matched points, 
average the two 3D normals to the skeletons to compute 
a common normal; 4) integrate the GM probabilities 
along the common normal in both scans, weighted by 
the strength of the match, to compute the thickness in 
each scan; 5) compute the difference in thickness. 

The skeletal line on each scan is obtained by 2D 
morphological binary thinning on the GM segmentation 
that has been thresholded at 90%. Next, for every point 
on the skeletal line in the first scan, a set of the closest 
matches are found on the skeletal line in the second scan 
based on three positional and shape features: spatial 
coordinates, unit normal direction, and shape context 
[9]. Shape context can be intuitively thought of as a 
spatial histogram that captures the distribution of 
neighboring points relative to a reference point.  

Let the skeletal point at a time point t and position p 

be࢙௣
ሺ௧ሻ . Between points ࢙௣

ሺଵሻ and ௤࢙	
ሺଶሻ , the cost of the 

mismatch in positional coordinates is calculated as: 
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where ௝ܲሺ࢙ሻ is the value of the ݆௧௛ component of s and 
୮ୡܭ  is a normalization constant. Similarly, for unit 
normals, the cost of the mismatch is calculated as: 
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where ࡺሺ࢙ሻ is the unit 3D normal at point s in a square 
window of size 5 and (.) represents the dot product of 
the vectors. Finally, the cost of the mismatch in shape 
context is calculated using a ߯ଶ statistic: 
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where ௜ܸ௝ሺ࢙ሻ is the value of the log-polar histogram at 
point s and ܭୱୡ is a normalization constant. To construct 
the histogram, a circular window of radius 4 is 
partitioned into 5 radial bins and 12 angular θ bins.  

The normalization constants ܭ୮ୡ and	ܭୱୡ are each set 
to the maximum individual cost computed for that 
feature, so that ܿ௜ ∊	 [0,1]. The individual cost from each 
feature is weighted differently towards the final cost: 
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where ݓ௜ is the weight of feature i between points ࢙௣
ሺଵሻ 

and ࢙௤
ሺଶሻ. We determined the weights ݓ௜ empirically by 

applying pseudo-random deformations to a scan with a 
GM segmentation, measuring the change in GM volume 
using Jacobian integration (JI), then finding the set of 
weights in our method that maximizes the agreement of 
our thickness measurements to the JI. The final weights 
were constrained to not differ by more than 0.25 from 
each other for generalizability, resulting in the values 
0.25, 0.50, 0.25 for ݓଵ,	ݓଶ,	ݓଷ, respectively.  

Using the computed costs, for each point in the  first 
scan, a maximum of the three closest matches are found 
in the second scan. In order to constrain the maximum 
distance of the match, points are compared in a 3D 
neighborhood window of size 7, which should be 
sufficiently large to contain the true matches for most 
MS studies up to 5 years. A match is discarded if its cost 
ܿ	 is above a precomputed threshold, which we 
determined empirically by varying the threshold in an 
independent set of development scans, and finding the 
value that maximized the number of matches while 
producing stable cortical change measurements. The 
thickness for each time point is then calculated as the 
sum of GM probabilities along the direction of the 
average normal ( ஜࡺ ) computed between the unit 
normals of the two scans. The average normal is used as 
a method of longitudinal regularization to reduce the 
variability of normal computations. From the point ࢙௣

ሺଵሻ, 
the GM probabilities are integrated in both  forward and 
backward directions along ࡺஜ to compute the thickness  
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where p(s) is the linearly interpolated probability of 
point s belonging to GM, Δܛ is the step size (0.25 mm) 
and ݊୤,  ݊ୠ are the numbers of steps taken in the forward 
and backward directions until one of the following 
stopping criteria is met: 1) if there is a break in the 
expected monotonic decrease in GM probability; 2) if a 
clinical prior of 4 mm away from the skeleton point in 
either direction is reached. The total prior of 8 mm is 
larger than used in some previous work (5 mm in [4]) 
because we are working directly with the probabilistic 
segmentation and not a thinner binary segmentation. 
Next, in order to detect buried sulci (deep, thin sulci 
where the cerebrospinal fluid, or CSF, is misclassified 
as GM), each average normal is analyzed to determine 
whether both the forward and backward directions 
terminate at the same type of boundary (GM-CSF or 
GM-WM). In the cases where they do, we take the 
thickness value at that point to be half of the measured 
value, similar to how buried sulci is handled in other 
voxel-based methods (e.g. [10]). Then, the mean change 
in thickness between matched points, weighted by the 
strength of each match, is calculated as:  
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where ܲሺ௧ሻ is the number of skeletal points at time point 

t,	ࣦ௣
ሺଶሻ is the set of points in the second scan that have 
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ሺଵሻ and ܹ൫࢙௣
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ሺଶሻሻିଵ  and ε is a small 
number added for numerical stability. In order to make 
the measurements symmetric between the two time 
points, the thickness changes are also calculated in the 
reverse direction using fuzzy correspondence and the 
resulting two measurements are averaged. 
 
Experiments and Results 
  

We compared LCT with the longitudinal pipeline of 
FreeSurfer v5.2.0. It took approximately 2.5 hours for 
LCT to process a subject, whereas FreeSurfer took 
about 26 hours on an Intel 2.33 GHz machine with 8GB 
of RAM. We performed comparisons in global thickness 
values for both datasets and at the lobe level for MS, 
with the lobes defined from the FreeSurfer labels and 
transformed into voxel space. Sensitivity to real change 
over time, reproducibility, and ability to reveal clinical 
relevant changes were evaluated for both methods. 

Scan-rescan reproducibility – When applied to the 
15 pairs of scans acquired an hour apart, LCT computed 
a mean change of -0.094% (SD = 0.525%) whereas 
FreeSurfer computed a mean change of 0.007% (SD = 
0.452%). Neither mean is statistically different from 0, 
when one-tailed t-tests are applied. The two SDs are 
comparable, indicating that the methods produced 
similar scan-rescan variability in this dataset.   

Results on the MS dataset over two years – Table 
1 shows the global and regional mean thickness change 
results for the MS dataset with 100 subjects. Our 
method measured a mean change of -0.242% (SD = 
1.398%) over the two-year interval, compared to 
FreeSurfer, which measured a mean change of -0.561% 
(SD = 3.867%). One tailed t-tests produced similar p-
values, 0.092 and 0.150, for LCT and FreeSurfer, 
respectively, for these global changes. For the regional 
analysis, LCT seemed slightly more sensitive to changes 
in the left frontal and occipital lobes than FreeSurfer, 
producing somewhat lower p-values. It is also notable 
that LCT provided better left-right symmetry, while 
FreeSurfer produced some very large SDs in the right 
hemisphere. Our results are consistent with earlier MS 
studies that also reported significant changes in cortical 
thickness in the frontal lobe. Overall, our method and 
FreeSurfer agree reasonably well, considering that they 
are two very different approaches. Cross-sectionally, the 
global mean thickness measurements produced by our 
method were 2.98 mm (SD = 0.21) and 2.97 mm (SD = 
0.22) for Time Points 1 and 2, respectively, while 
FreeSurfer produced close mean measurements of 3.13 
mm (SD = 0.21) and 3.12 mm (SD = 0.22). We 
evaluated the longitudinal agreement between the 
methods by computing the correlations between the 
changes measured (Table 2). The global cross-sectional 
results correlate moderately well (~0.6), while the 

 
Table 1: Mean cortical thickness change (%) over 2 years computed 
by LCT and FreeSurfer on 100 SPMS subjects. Our method produced 
lower mean measurements for all regions, but lower SDs as well. The 
statistical tests show slightly greater sensitivity to change for our 
method. The ** indicates where a p-value was significant (p < 0.05) 
and * indicates a trend towards significance (0.05 < p < 0.1). 

 Global  Frontal Temporal Parietal Occipital 

FS Mean   
% Change 

-0.561 

L
ef

t H
em

i. -0.650* -0.360 -0.420 -0.240 

SD  3.867  3.520  3.840  3.310  4.130 
LCT Mean  
% Change -0.242* -0.350** -0.010 -0.030 -0.520** 

SD  1.398 1.740  1.700  1.600  2.400 
       
FS Mean   
% Change  

R
ig

ht
 H

em
i. -0.490 -1.160 -1.520 -1.080 

SD   3.690  9.760 13.260 10.300 
LCT Mean 
 % Change  -0.290 -0.040 -0.200 -0.090 

SD   1.750  1.660  1.680  2.240 

 
Table 2: Pearson correlation coefficient (r) between thickness 
measurements of FreeSurfer and our method over 2 years computed 
on the MRIs of 100 SPMS subjects. All the p-values from the 
correlations produced are statistically significant (p < 0.05) except for 
two which are marked with ª. Overall, the proposed method and 
FreeSurfer agree reasonably well. 

 Time Point 1 Time Point 2 
% Thickness 

change 
Global 0.581 0.594 0.242

 Left Right Left Right Left Right
Frontal 0.752 0.810 0.660 0.718 0.450 0.346

Temporal 0.531 0.578 0.461 0.340 0.177 0.057ª
Parietal 0.705 0.752 0.701 0.580 0.446 0.331

Occipital 0.547 0.528 0.523 0.471 0.061ª 0.220
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Table 3: Pearson correlation coefficient (r) between MS clinical scores and % change in thickness measurements over 2 years, as computed in 100 
SPMS subjects by FreeSurfer (FS) and our method (LCT). LCT was able to measure thickness changes that correlate significantly with T25W at the 
global level, and with PASAT in the frontal and temporal lobes, while FS did not. The ** indicates where the p-value was significant (p < 0.05). 

correlations for the regional cross-sectional 
measurements range from about 0.3 to 0.8, with the 
strongest agreement in the frontal and parietal lobes. In 
the longitudinal results, mostly moderate correlations 
between the two methods are seen, with the global 
changes having a correlation of 0.241 and the regional 
changes having correlations ranging from about 0.2 to 
0.4, again with the frontal and parietal lobes exhibiting 
the strongest agreement between the two methods. 

To evaluate the clinical relevance of the results from 
the two methods, correlations were also computed 
between the percentage changes in thickness and 
percentage changes in clinical scores (Table 3). The 
global percentage thickness change computed by our 
method correlates significantly with the percentage 
change in the T25W scores (r = 0.208, p < 0.05). In 
addition, the regional analysis revealed significant 
correlations of percentage change in thickness measured 
with LCT with percentage change in the PASAT in the 
frontal and temporal lobes in both hemispheres. The 
Pearson correlation coefficients in the frontal lobe are 
slightly higher (0.241 for left and 0.272 for right), 
compared to the temporal lobe (0.213 for left and 0.206 
for right). LCT was able to find significant correlations 
between longitudinal changes in cortical thickness and 
clinical scores, which is of strong clinical interest. This 
positive finding has very rarely been reported in the 
literature, and was not seen in the FreeSurfer results.  
 
Discussion and Conclusion  
 

We have proposed a new voxel-based longitudinal 
method for measuring changes in cortical thickness 
between pairs of MRIs. Unlike other methods, the 
proposed method does not require deformable 
registration, but instead uses a robust feature-matching 
approach specifically targeting the cortex. Fuzzy 
correspondence is used to enhance the stability of 
matches. Tests using scan-rescan and clinical datasets 
show that LCT demonstrates greater sensitivity to 
clinically relevant changes, as assessed by correlations 
between thickness changes and changes in clinical 
scores, than FreeSurfer, while retaining the same 
reproducibility. Overall, LCT and FreeSurfer agree 
reasonably well for cross-sectional measurements, but 
differ longitudinally, which is not unexpected given that 
LCT takes a very different approach to directly measure 
thickness changes, while FreeSurfer is still largely a 

cross-sectional method with affine registration added to 
reduce longitudinal variability. While the lack of ground 
truth makes resolving differences difficult, LCT appears 
to have some advantages in our experiments. 
Additionally, the relatively fast processing speed makes 
LCT very practical for large clinical studies. 
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  Global Left Hemisphere Right Hemisphere 
   Frontal Temporal Parietal Occipital Frontal Temporal Parietal Occipital 

L
C

T
 MSFC  -0.004  -0.019   -0.012 0.089 0.032 -0.027 0.119 0.058  0.032

PASAT  -0.013  0.241**    0.213** 0.128 0.109     0.272**    0.206** 0.117  0.063

T25W 0.208**   0.052    0.070 0.021 0.078  0.093 0.121 0.070  0.137

9-HPT   0.136  -0.087   -0.154 -0.078 -0.135 -0.101     -0.148 0.008 -0.146

F
S

 

MSFC   0.006  -0.024   -0.019 -0.039 0.028 -0.005  0.041 0.017  0.022

PASAT   0.077   0.056    0.072 0.146 0.148  0.075 -0.009 0.031  0.040

T25W   0.005   0.075    0.005 0.082 0.003 -0.003  0.001 -0.010 -0.093 
9-HPT   0.027  -0.023   -0.041 -0.013 -0.016 -0.048  0.066 0.111  0.140
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