
XXIV Brazilian Congress on Biomedical Engineering – CBEB 2014 

 

 1

Patient-specific Mechanical Simulation of the Knee Joint with Integration of 
Magnetic Resonance T1-T2 Values 

 
Diego Infante1, Ricardo Belda1, Ángel Alberich-Bayarri2, Roberto Sanz-Requena3, Luis Martí-

Bonmatí2,3, Eugenio Giner1 
  

1 Dpt. of Mechanical Engineering and Materials - CIIM, Polytechnics University of Valencia, 
Valencia, Spain 

2 Biomedical Imaging Research Group (GIBI2^30), La Fe Polytechnis and University Hospital, 
Valencia, Spain 

3 Biomedical Engineering, Quiron Hospitals Group, Valencia, Spain 
 

email: angel@quibim.com 
 

 
Abstract: Articular cartilage exhibits unique depth-

dependent mechanical properties influenced by its 
heterogeneous composition and inhomogeneous 
distribution of proteoglicans, water content and collagen 
fibrils. Recent studies have estimated the mechanical 
properties of articular cartilage with MRI. The aim of 
this study is to analyse the importance of these depth-
dependent properties for mechanical stresses and strains 
resulting from the contact simulation between tibial 
cartilage and femoral cartilage in knee joint. In order to 
make the model, the mechanical properties were 
assigned from T1-T2 mapped MR-images. Subject-
specific anatomic structures and mechanical properties 
of femoral and tibial cartilage were implemented in a 
3D finite element model extracted from MR images. 
Cartilage was segmented using a self-developed 
software from high resolution T1-weighted images 
obtained in a 3T magnet. Cartilages and bones were 
modelled as linear isotropic elastic materials, with non-
homogeneous properties in the case of cartilage. 
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Introduction 
  

Articular cartilage is the tissue that covers  the 
bearing surfaces in all synovial joints providing low-
friction  and allowing free-pain movement [1]. From a 
mechanical point of view, cartilage is a porous, 
viscoelastic material [2], which shows anisotropic and 
nonlinear properties in compression and tension [3],  
consisting of three phases: 1) a solid phase, which is 
mainly composed by a collagen fibrillar network (15–
22% by wet weight) enmeshed with proteoglycan 
macromolecules (PG, 4–7% by wet weight; 2) a fluid 
phase, which is water (80% by wet weight); and 3) an 
ion phase, which has many ionic species with positive 
and negative charges. 

Composition and structure of articular cartilage vary 
through depth [4].This way, articular cartilage can be 
divided into 4 main zones specified by thickness: the 
superficial, middle, deep and calcified cartilage zone.  

Some ex-vivo studies in humans and other species 

have shown that the load-bearing capacity of cartilage is 
dependent on the content of their components [5-8]. MR 
imaging has become a powerful non-invasive technique 
for exploring the anatomy and function of tissues and 
organs within the human body. For that reason, some 
authors have established a connection between magnetic 
resonance parameters and water content [11], 
glycosaminoglycan concentration [12] or collagen 
distribution [13]. For example, Nissi et al. [10] have 
established relationships between bulk T1 or T2 
relaxation time and mechanical properties of the 
samples.  

Furthermore, some authors have found a connection 
between local mechanical properties and magnetic 
resonance parameters. We can refer to Samosky et al. 
[9], who found a high correlation between the 
dGEMRIC index (T1Gd-) and local stiffness. 
Consequently, it would be possible that the local 
stiffness would change according to the composition of 
the local sample. 

This study is aimed at implementing local 
mechanical properties extracted from mapped MR-
images applying the relationship established by Nissi et 
al. [10] in a 3D non-linear FEM subject-specific of the 
contact between tibial and femoral cartilage. Results 
obtained in strain and stress were compared to 
homogenous and local assignment of the mechanical 
properties. 
  
Materials and methods 

 
MRI acquisition, segmentation and registration 
The image acquisitions were performed in a left 

knee joint with magnetic resonance 3T Achieva TX 
scanner (Philips Healthcare, Best, The Netherlands) 
magnet. Two image acquisitions were carried out for the 
proper execution of the simulation: 1) a 3D high-spatial 
resolution set of images for bone and cartilage 
characterization; and 2) a T1-mapped set of images for 
parametric material property assignation.  

The designed pulse sequence for segmentation 
image acquisition consisted of a 3D T1 gradient-echo 
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sequence with water selective excitation (TR=20 ms, 
TE=4.43 ms, flip angle=15°, slice thickness=1 mm, 
matrix size=512x512, in-plane resolution= 0.3 mm).  On 
the other hand, image acquisition for T1 mapping 
consisted of a T1 3D gradient echo (GE) with a varying 
flip angle  (TR=8 ms, TE=4 ms, flip angle=2° to 40º, 
slice thickness=3 mm, matrix size=192x192, in-plane 
resolution=0.78 mm).   

Articular bones and cartilages were segmented 
through sagittal planes slice by slice using an in-house 
developed solution. The tool also allowed the 
registration of T1 maps in the cartilage geometry. The 
final results obtained from this tool were a three-
dimensional matrix with voxel-wise T1 values of each 
anatomic component of the simulation. 

 
Material properties  
In all simulations, cartilage and bone were modelled 

as elastic isotropic materials. Elastic materials are 
completely defined by two constants: Young's modulus 
and Poisson coefficient. Material properties of bone 
were extracted from Reily et al [15] (E=17GPa, ν=0.3). 

Material properties of cartilage were extracted from 
Nissi et al. [10] estimation from T1-mapped images. 
The relationship between T1 relaxation time and 
Young's modulus is shown in table 1. 

 
Table 1: Relationship between material properties and 
relaxation time T1. 
 

T1 (ms) E (Pa) 

T1 < 1328 1.03·106 

1328 ≤ T1 ≤ 2026 -1045.85 T1 + 1.08·108 

T1 > 2026 0.3 · 106 

 
Three different material property mapping were 

simulated for the study of depth-wise properties in 
cartilages: a) "HA" Homogeneous Assignation to all 
elements by mean T1 relaxation time of the whole 
cartilage; b) "HAT" Homogeneous Assignation to 
Transversal element planes by mean T1 relaxation time 
in each transversal sample; and c) "EBEA" Element By 
Element Assignation extracted from T1-mapped 
relaxation time. 

 
Meshing of the anatomic structures 
All meshes were performed by a free 

MatLab/octave-based mesh generator iso2mesh [14]. 
Firstly, binary volumes from segmented mask were 
slightly smoothed for improving the contact surfaces 
between components. The following step consisted on 
extracting an isosurface from the smoothed volumes. 
Finally the isosurfaces were meshed with tetrahedral 
elements and the cartilage ones were refined in order to 
obtain more accurate results. 

 

 
 
Figure 1: Knee joint mesh generated from MR images. 
 

Boundary conditions and simulations 
Exterior nodes located at the bottom face of the tibia 

were fixed. Exterior nodes located at the top face of the 
femur were fixed in transversal displacements. 
However, nodes on the top femur surface were 
constrained with 1 mm displacement in the longitudinal 
direction of the bone. The constraints remain unchanged 
in all simulations. 

Numerical solution was performed with the 
commercial software ANSYS 14.5. (ANSYS Inc, 
Southpointe, PA, USA). Contact between cartilages was 
solved with the Augmented Lagrangian method. 
Contacts between cartilage-bone surfaces were 
substituted by the multi point constraints (MPC).  
 
Results 
 

Results obtained from the numerical resolution were 
specially focused on strains and displacement 
comparing mean values in each cartilage. Stresses were 
less accurate than displacements due to local high 
stresses located in the contact between cartilages. Mean 
displacement values were normalized by the imposed 
displacement constraint (1 mm) and are presented in 
Table 2. Mean strain values for cartilages are shown in 
Table 3. 

 
Table 2: Mean displacement values for each cartilage 
normalized by the imposed displacement. 
 

Femoral Cartilage Tibial Cartilage 

HA 0,920 0,224 

HTA 0,923 0,220 

EBEA 0,924 0,216 

  
Table 3: Mean strain values for each cartilage. 
 
  Femoral Cartilage Tibial Cartilage 

HA 0,0410 0,0525 

HTA 0,0421 0,0517 

EBEA 0,0425 0,0517 
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The different results obtained with the methods can be 
appreciated in table 4 and 5. 
 
Table 4: Relative strains compared to EBEA analysis. 
 

   Femoral Cartilage Tibial Cartilage 

HA -3,46% 1,41% 

HTA -0,89% 0,01% 
 

Table 5: Relative displacements compared to EBEA 
analysis. 

 

   Femoral Cartilage Tibial Cartilage 

HA -0,43% 3,33% 

HTA -0,10% 1,86% 
 
Displacement femoral cartilage distribution for each 

model is shown in Figure 2 and Figure 3. 
 

 
Figure 2: HA and HTA displacement vector sum 
distribution. 
 
 
 
 
 
 

 

 
 
Figure 3: EBEA displacement vector sum distribution. 
 
Discussion 
 

Analysing mean strain results globally, strains in 
Tibial cartilage are approximately 25% higher than in 
Femoral cartilage, so Tibial cartilage is the component 
that suffer greater levels of stresses. A discussion of 
relative strains compared to the EBEA model is 
presented in Table 4. Relative strain results for EBEA 
are higher for Femoral cartilage than HA and HTA 
results and lower for Tibial cartilage than HA and HTA 
results. Furthermore, differences between HTA and 
EBEA assignation are practically negligible (lower than 
1%), so it can be concluded that EBEA and HTA models 
lead to similar results in mean strains for each cartilage. 

 
A discussion of relative displacements compared to 

EBEA analysis is presented in Table 5. The tendency in 
relative strain results is also observed in relative 
displacement results. EBEA model produces higher 
mean displacement for Femoral cartilage than HA and 
HTA models, and lower mean displacement results for 
Tibial cartilage. 
 

Analysing the results in Table 5, we can claim that 
relative mean displacement are nearly the same in 
Femoral cartilage for each model (differences are lower 
than 0.5%). Tibial cartilage mean displacement results 
for EBEA model are lower than results predicted for HA 
and HTA models but differences are lower than 3,5%. 
Furthermore, local assignations of the mechanical 
properties were responsible of the variations in the 
displacement distribution shown in Figure 2.  

 
To conclude, Tibial cartilage suffers greater stress 

level so is the most critical component. In terms of 
mean strain and displacement values, EBEA, HTA and 
HA models predict similar results. The difference 
between using each model is lower than 3,5% in any 
case so we can conclude that using a simpler model 
produce a low level of error in terms of mean values for 
each cartilage. Nevertheless, EBEA results should be 
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experimentally validated. In order to improve local 
results which allow quantifying local stresses and 
strains, geometric discontinuities should be removed. 
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