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Abstract: Graph theory applied to functional Magnetic 
Resonance Imaging (fMRI) analysis allows valuable 
and specific information of the functional network 
structure within the brain.  Due to the sensitivity of 
graph theoretical measures, any noise in the data may 
alter these measurements, including subject head 
motion. However, noise in fMRI can be generated not 
only by head motion, but several other undesired 
sources, such as physiological noise or equipment 
errors. The amount of noise can be estimated though an 
outlier measurement of the time series within the 
voxels. This article aims to assess the impact of noise in 
fMRI data in Graph Theoretical Measurements (GTM), 
within a normal population, using two parameters; 
patient head motion and number of outliers in the 
functional data. With different threshold levels used to 
calculate the GTM (Global Efficiency, GE; 
Characteristic Path Length, CPL; Average Local 
Efficiency, ALE; Average Clustering Coefficient, ACC) 
we calculate the correlation with the two noise. We 
found high levels of correlation between GTM and 
patient motion estimation (ME) and outlier 
measurements (OM). However, there is a greater 
correlation between OM and GTM than ME and GTM. 
Our results demonstrated that GTM are affected by 
more than just head motion, but by other noise sources 
that can be captured by observing the outliers within the 
functional time series. 
Keywords: fMRI, resting state, graph theoretical 
measures 
 
Introduction 
  

The analysis of complex networks is an area that is 
currently being extensively explored. The neural 
topology of the brain is a typical example of  a complex 
network.  The analysis of complex networks allows us 
to describe important properties of complex systems, 
quantifying their structural organization. The study of 
topological properties of the network is called graph 
theory. When graph theory is applied to evaluate 
functional magnetic resonance images (fMRI) data, the 
nodes are defined as the brain regions (i.e. regions of 
interest - ROIs) chosen a priori, and the edges are the 
connections (i.e. functional correlation) between the 
ROIs [1]. 

The application of graph theory in fMRI allows us to 
get valuable and distinct information that is not obtained 
by typical methods that evaluate brain connectivity [2], 
such as seed-based connectivity maps.  Furthermore, 
through the use of resting state fMRI (rs-fMRI) and 
electroencephalography data, it was demonstrated that 
the human brain is organized in such a way that it 
embraces several small-world properties [3][4][5]. 
Graph theory is increasingly being applied in 
neuroimaging data and novel measurements are being 
created and tested for their potential applicability to 
study the human brain connectome at a structural and 
functional level [1][6]. 

Neuroimaging studies have shown that the brain 
topology  can vary according to  mental state, including 
neuropsychological disorders [7][8][9], age [4][10][11] 
and even sex [12]. Henceforward, even between healthy 
individuals the architecture of the neural network can be 
significantly distinct. 

Knowing that head motion alters the fMRI signal 
and induces erroneous correlations [13] a study of the 
impact of head motion on measurements of graph theory 
is required. Yan et a., [15] evaluated different forms of 
motion estimation in rs-fMRI and found that graph 
theoretical measurements (GTM) vary quite 
substantially depending on level of head motion. 

However, noise in fMRI can be generated not only 
by head motion [14] but several other undesired 
reasons, such as: thermal noise intrinsic to the patient 
and electronic equipment’s, noise related to the 
imperfections of hardware, noise related to cardiac, 
respiratory cycle and other physiological processes. 

This article aims to assess the impact of noise in 
fMRI data in GTM, in a normal population, using two 
parameters: patient head motion and number of outliers 
in the functional data. The latter was chosen because 
outlier measurements not only address motion, but also 
other sources of noise. 
 
Materials and methods 
  

Data Sample 
The sample used in this work consists of a publically 

available dataset, the 1000 connectomes Functional 
Project which is part of the International Neuroimaging 
Data-sharing Initiative (INDI) (http://fcon_1000 
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.projects.nitrc.org/) [15]. A subset of one hundred and 
two subjects from the Peking University where used in 
this study, including only right handed healthy controls. 

Data preprocessing 
All functional data was preprocessed using AFNI 

[16]. Data was initially despiked, slice-time corrected, 
and motion corrected (explained more in depth below). 
Then it was spatially normalized to a standard space 
(MNI152), and passed through a band-pass filter (0.01 - 
0.1 Hz). Additional, the average signal of white matter 
and cerebrospinal fluid as well as the six estimated 
motion parameters where used as nuisance variables in a 
general linear model analysis with the functional data. 

Motion Estimate (ME) 
Motion correction in functional data is performed 

using a 6-parameter rigid body affine transformation 
(AFNI - 3dvolreg). Specifically, using a reference image 
(typically the first image in the functional scan) and an 
optimization algorithm (linearized weighted least 
squares) the six motion parameters (translation: x,y,z; 
rotation: roll, pitch, yaw) are estimated in each 
functional image and used to align data in the 
preprocessing steps. The amount of motion in each 
image is calculated by: 

ሺ݅ሻ௦	ݐ݋ܯ ൌ 	 ሺሺݔ௜ െ ௜ିଵሻଶݔ ൅ ሺݕ௜ െ ௜ିଵሻଶݕ ൅
ሺݖ௜ െ ௜ିଵሻଶݖ ൅ ሺݎ௜ െ ௜ିଵሻଶݎ ൅ ሺ݌௜ െ ௜ିଵሻଶ݌ ൅

ሺݓܽݕ௜ െ               (1)	௜ିଵሻଶሻଵ/ଶݓܽݕ
 
where x, y and z are the translation estimates and r, 

p, yaw are the rotation estimates, i is image, and s is the 
subject. The amount of motion of each subject within a 
functional scan was estimated by calculating the 
average of Mot(i)s across time, denoted here as motion 
estimate (ME) score. ME scores were correlated with 
GTM. 

Outlier Measurement (OM) 
Outliers’ measurements are calculated by analyzing 

time series of all the voxels within the brain. For each 
voxel, the median (m(v)) and the median absolute 
deviation (MAD(v)) are calculated. Next, an acceptable 
intensity range for each voxel is defined by [m(v) - 
a·MAD(v) ; m(v)+ a·MAD(v)], where a=Q-1(0.01/N) 
·√(π/2), and Q() is the reversed Gaussian cdf and N is 
the length of the time series. If a time point of a 
particular voxel is outside this range, it is considered an 
outlier. For each time point, the total amount of outliers 
within all the voxels is computed. Finally, the average 
number of outliers throughout time is defined as the 
outlier measurement (OM) and is compared to GTM 
[17]. 

Network Extraction 
To define the nodes, a mask that divides the brain 

into 200 non-overlapping regions [18] was used. To 
define the edges, a connectivity matrix was created by 
calculating the pairwise functional correlation between 
each node-pair. Using the Brain Connectivity Toolbox 
[1], the following GTM were computed: characteristic 
path length (CPL), global efficiency (GE), average 
clustering coefficient (ACC), and average local 
efficiency (ALE). 

  
Results 
  

The average ME across all subjects is 0.0672 
(±0.0232) and the average OM is 0.0028 (±0.0069). 
With a 0.2 threshold on the connectivity matrix, the 
resulting average GTM were: GE= 0.568 (±0.022), 
CPL=1.959 (±0.065), ALE=0.659 (±0.055) and 
ACC=0.430 (±0.051). Correlation between ME and OM 
and GTM (with different thresholds on the connectivity 
matrix and corresponding statistical p-score) are 
displayed in Table 1 and Erro! Fonte de referência não 
encontrada., respectively.  

 

Table 1. Correlation – Graph theoretical Measures and 
Motion Estimation 

 

GT 
Measures 

Threshold 
0.2 0.3 0.5 

GE 
0.293 

(p<0.005) 
0.313 

(p<0.001) 
0.269 

(p<0.01) 

CPL 
-0.282 

(p<0.005) 
-0.240 

(p<0.05) 
-0.040 

(p>0.05) 

ALE 
0.293 

(p<0.005) 
0.290 

(p<0.005) 
0.286 

(p<0.005) 

ACC 
0.261 

(p<0.01) 
0.286 

(p<0.005) 
0.286 

(p<0.005) 
GT – Graph Theoretical, GE – Global Efficiency, CPL –

Characteristic Path Length, ALE – Average Local Efficiency and ACC 
– Average Clustering Coefficient. 

 

Table 2. Correlation – Graph theoretical Measures and 
Outlier Measurements 

 

GT 
Threshold 

0.2 0.3 0.5 

GE 
0.476 

(p<0.001) 
0.475 

(p<0.001) 
0.511 

(p<0.001) 

CPL 
-0.435 

(p<0.001) 
-0.426 

(p<0.001) 
-0.151 

(p>0.05) 

ALE 
0.375 

(p<0.001) 
0.365 

(p<0.001) 
0.397 

(p<0.001) 

ACC 
0.369 

(p<0.001) 
0.333 

(p<0.001) 
0.347 

(p<0.001) 
GT – Graph Theoretical, GE – Global Efficiency, CPL –

Characteristic Path Length, ALE – Average Local Efficiency and ACC 
– Average Clustering Coefficient. 

 

A graphical representation of the correlation 
between GTM and GE are shown in Erro! Fonte de 
referência não encontrada.. Analyzing in more detail 
Fig. 1(b), it appears that one subject exhibit an elevated 
amount of OM (indicated in a red circle). The 
correlation between the noise estimates (ME and OM) 
and GTM (threshold = 0.2) were recalculated without 
the one subject with elevated OM. Correlation between 
ME and GTM are the following: GE=0.219 (p<0.05), 
CPL=-0.219 (p<0.05), ALE=0.240 (p<0.05) and 
ACC=0.203 (p<0.05).  Correlation between OM and 
GTM without the outlier subjects are the following: 
GE=0.443 (p<0.001), CPL=-0.441 (p<0.001), 
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ALE=0.377 (p<0.001) and ACC=0.342 (p<0.001). 
Finally, Additional analysis showed that there was a 
correlation of r=0.453 (p<0.001) between the ME and 
OM.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Discussion 
  

 
Discussion 

 
The objective of this study was to evaluate the effect 

of two different methods to measure noise in fMRI data 
on graph theoretical measurements: estimation of head 
motion and the measurement of time series outliers. 
Specifically, the effect was tested with a homogeneous 
group of healthy controls, which underwent an rs-fMRI 
scan. It was expected and desired that there would be 
little or even no relationship between noise 
measurements and GTM. However, it was observed that 
there is in fact a high level of correlation between noise 
measurements (ME and OM) and GTM.  

It has been shown that head motion can affect GTM 
[19], however, there are also other sources of noise in 
fMRI that are not captured by algorithms that estimate 
motion. Within the preprocessing steps of fMRI, 
algorithms attempt to remove or minimize the effect of 
these imperfections within the data, using motion 
estimation and average signals from white matter and 
cerebrospinal fluid (where it is expected to have no 
BOLD signal) as nuisance variables in a multiple 
regression analysis. We have performed these 
preprocessing steps in our study. However, it is 
supposed that OM is a means of measuring the effect of 
the all the different noise sources that may affect fMRI 

data.  
Overall, our results indicate that the GTM are more 

highly correlated with OM compared to ME. This was 
observed for all the GTM and at different levels of 
threshold of the connectivity matrix (see Table 1). The 
correlation of GTM with OM is higher at all threshold 
values, when compared to the correlation of GTM with 
ME. 

It can also be observed that there is a general 
decrease in correlation between the noise estimates and 
GTM as connectivity matrix threshold increases. With 
higher thresholds only the stronger connections (higher 
r-scores) are kept, precisely those that are not affected 
by noise. Also, it was observed that there is still a high 
level of correlation between GTM and OM, even when 
the one subject with elevated OM level was removed 
from the analysis. The removal of subjects with high 
level of noise or head motion from a study is usually 
done in fMRI studies. However, through the results in 
this article, this has been shown to not be sufficient 
since there still is a correlation between GTM and OM 
or ME. 

 
Conclusion 

 
Our results agree with the results obtained by 

previous study [19], where GTM are affected by head 
motion. However, we have extended the analysis and 
shown that GTM are affected by more than just head 
motion, by observing the outliers within the functional 
time series. This is indicated by the correlation score 
between ME and OM (r=0.453, p<0.001), where the 
correspondence between them is not perfect. 

Measuring outliers in the time series within voxels is 
not a faultless measurement of the level of noise in 
functional data. However, there is still no complete and 
precise way to estimate noise.  

Further work still needs to be done to completely 
understand the effects of noise in GTM. A limitation of 
this study is that only one group of subjects was used. 
Future work should be performed on datasets from 
several different sources. Additionally and more 
importantly, we need to develop techniques that reliably 
“clean up” functional data which used in brain topology 
measurements. Therefore we can reliably use GTM to 
understand different clinical populations or groups.  
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Figure 1 – Grafical representating of the correlation between (a) 
Global Efficiency (GE) and Motion Estimation (ME) and (b) GE and 
Outlier Measurement. In (b), red circles respresnt two subjects that 
had exessive outliers.  
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