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Abstract: Ostheosynthesis plates have been used to fix 
broken bones during healing process. The plate is fixed 
at a long bone, like a human femur by screws, sharing 
forces and moments with it. In this paper, a plate medial 
cross section stress distribution was analyzed, through 
the presentation of an analytical model, mainly based on 
mechanics of solids. A finite element model was used, 
as reference, to compare von Mises stress distribution 
results. 
Keywords: ostheosynthesis plate, stress analysis, 
analytical model, long bones, finite element model 
 
Introduction 
  

Ostheosynthesis plates (from now on called plates) 
are used to minimize the recovery period of a patient of 
fractured long bone, by sharing the bone load, helping 
the fracture consolidation. Previous works proposes 
analytical models to estimate load sharing between plate 
and bone [1]. Mechanics of solids was used to relate 
external forces, as the joint reaction force and three 
muscles loads, acting at proximal human femur, with the 
internal loads acting at a human bone/plate medial cross 
section. The analytical calculations are presented, in 
addition to the well-established finite element method, 
to obtain a better understanding of internal loadings 
share between bone and plate at a medial cross section.  

Figure 1 shows the loading model configuration with 
four external static forces applied at femur's head, 
adapted from the Taylor’s fourth load case of human left 
femur’s head [2]. The external forces were named: Joint 
Reaction (P1), Abductors (P2), Ilioopsoas (P3) and Ilio-
Tibial Tract (P4). See [3] for more complex muscle 
loading cases description. 
 
 
 
 
 
 
 

 
Figure 1: Schematic sketch of a femur loading model. 
Adapted from [1] 

 
Note this external loading model is a simplification 

of real human's femur bone external loading.  
  
Analytical Model 
  

Few hypotheses were used to simplify the 
mechanical model construction: No bone side ligaments 
are implemented, the load is shared between plate and 
bone, the bone and plate cross sections are assumed to 
be, respectively, hollow circular and rectangular. The 
screw holes are not modeled. Also the bone tissue is 
assumed to be cortical and the plate material stainless 
steel, both supposed as isotropic. 

Global and local coordinates systems are considered, 
as showed at Figure 2. The local axes, x and y, follows 
the cross section centroid of the assembly plate and 
bone set, and are placed at θ = 180º, in 
counterclockwise direction, relative to the global x axis 
(xg positive direction is at 0°).  
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Figure 2 also shows the bone and plate main cross 
section dimensions, the reference points at plate cross 
section area (from 0 to 8) and both coordinate systems. 

 

 
Figure 2: Cross section display for plate at θ = 180º. 

 
Expressions 1.a and 1.b shows the distance from 

bone centroid to bone/plate centroid s  and the distance 

from plate centroid to bone/plate centroid t , according 
to Figure 2.    
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 Where bp* AAa  , bp* EEe  , b and p superscripts 

refer, respectively to, bone and plate. Also A is area; E is 
modulus of elasticity. B and H are, respectively, the 
plate width and thickness. The forces and the distances 
from each force to the cross section centroid can be 
written in a vector form, using index notation as  
 

gggggg zz,nyy,nxx,nn êPêPêPP                (2) 

gggggg zz,nyy,nxx,nn êdêdêdd               (3) 

 
Where, g subscripts are referenced to global system 
coordinates. 

gxê , 
gyê  and 

gzê are unit vectors. The 

index n ranges from 1 to 4, because of the four external 
forces. The forces and moments components, written in 
local coordinates, at centroid cross section are: 
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To get more compact expressions, the stiffnesses are 
established in Table 1: 

 
 Table 1 - Bone and Plate stiffnesses  
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Where a, b and t subscripts refers, respectively to, axial, 
bend and torsion. tb and b

medR  are, respectively, the 

thickness and the average radius of the bone. For each 

load, the equivalent stiffness eqk  is compound by bone 
and plate stiffnesses (springs in parallel arrangement). 

The forces and moments are acting at the 
bone/plate centroid, thus, it is necessary to evaluate load 
shares. Using geometric compatibility, the displace-
ments and slopes must be the same for plate and bone to 
ensure the implant stability:  
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The torsional stress distribution is modelled through 

the utilization of a stress function, shown at (16). The 
stresses are estimated by the following expressions.  

The plate axial stress is, [4]: 

p
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     The plate bending stresses is, [4]: 
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The plate transverse shear stresses are, [4]: 
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To model the torsion shear stress, it is used the 
following stress function [5]: 
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Also, the stress distributed load along the bone/plate 
medial contact region is [5]: 
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Where, 24lFM cicont  , Fi is the bolt preload, p
yI  is the 

moment of inertia relative to the plate centroid and lc is 
the length of the contact between bone and plate. The 
von Mises criterion was applied to sum the effects of 
stress distribution caused by each load, [4]: 
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See Tab.2, at Appendix, for geometric expressions.  
 
Numerical Model 
  

The numerical model was built up using the finite 
element software ANSYS, to simulate the effect of the 
muscles loads acting on the bone/plate set. The moment 
and forces resultants were applied at proximal part of 
tubular structure that represents the bone and the distal 
part was fixed. The simulations were carried out using 
the following hypothesis: the bone cross section is 
hollow circular, the contact between plate and bone is 
frictionless, the contact between the screw and the bone 
not allow separation neither slip on their surfaces, screw 
and plate contact region also is defined as frictionless 
(the internal surface of the plate hole and the external 
screw surface are smooth) and the bolt preload is 
enough to fix the plate [6]. The plate used in this work 
has B = 4.8 mm, H = 16.5 mm and length L = 200 mm. 

 
 

The external forces values are (N):                       
P1 = (–1,062; -130; -2,800), P2 = (430; 0; 1,160),           
P3 = (78; 560; 525) and P4 = (0; 0; -1,200). The 
distances between forces point of application and cross 
section centroid are (mm): d1 = (50.7; -2.7; 218),           
d2 = (-13.5; -6.5; 200), d3 = (18.8; -29.3; 143.7) and       
d4 = (-24.6; -4.2; 168). The cross section bone geometry 
are Re = 15.5 mm and Ri = 7.65 mm. 
        The mesh of the straight plate (0.75 mm) and bone 
(1.75 mm) are shown at Figure 3. These mesh 
dimensions was adopted after a convergence study.  
1216606 solid elements (SOLID187) and 81854 contact 
elements (CONTA174 and TARGE170) were used, as 
well as 1885470 nodes.   
 

              
 

Figure 3: Geometry and mesh of numerical simulation. 
 

The bone was modeled as linear, elastic and 
isotropic, with Eb = 20 GPa, νb = 0.236. The plate was 
modeled with an elastoplastic bilinear behavior with 
isotropic hardening, with Ep = 190 GPa, νp = 0.3, 

MPa690Sp
y  and .MPa860Sp

ut   

Figure 4 shows plate von Mises stress distribution. 
  

 
Figure 4: Equivalent von Mises stress of the plate. 
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Results 
 

MathCad software was used to implement the 
analytical model expressions. As the plate transverse 
shear stresses were small in comparison to the other 
stresses, they were not used in analytical model. 

To improve the conditions to compare this result 
with the proposed analytical model, four paths were 
created at the plate medial cross section edges of Figure 
2 and the von Mises stress results were plotted at Figure 
5. The path geometry are shown at Figure 2 and are 
labeled as Path 1, which begin at point 8 and ends at 
point 2; Path 2, from 6 to 4;  Path 3, from 4 to  2 and 
Path 4, from 6 to 8. 

 
(a) 

 
(b) 

Figure 5: von Mises stress results. 
 

The von Mises results for the four paths plotted, at 
Figure 5, for analytical and Finite Element models were 
quite similar, except for path 2. As the stresses were 
elastic, and the normal stresses were bigger than shear 
stresses (only torsional stresses are taken into account), 
the stress distributions were almost entirely linear.  Note 
that path 4 has contact with bone only at y = 0 mm 
(point 7 of Figure 2). Also note that the slopes change in 
Figure 5.b is due to Mises stresses components, all 
squared, so they are always positive. For the adopted 
loading and distances, at medial cross section, the von 
Misses stresses varied from 0 to 80 MPa. Points 6 and 4 
have the maximum stresses and point 7 has the 
minimum ones. 

 
 
 

Conclusion 
 
         An analytical model was developed, mainly based 
on mechanics of solids, to estimate von Mises stress 
distribution at a plate medial cross section attached to a 
human femur bone. The explicit relationship between 
loads and stresses was obtained.  The analytical model 
expressions were implemented on a mathematical 
software, much cheaper than Finite Element ones, 
which is an interesting gain. Further developments has 
to be implement in analytical model, as an upgrade to 
the plate cross section to better represent a real plate 
cross section.  
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6. APPENDIX 

 
Table 2 shows geometric expressions used in model. 

Table 2:  Geometric expressions. 
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