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Abstract: In recent years, a variety of different BCI 

applications for communication and control were 

developed. A promising new idea is to utilize BCI 

systems as tools for brain rehabilitation. The BCI can 

detect the user's movement intention and provide online 

feedback for rehabilitation sessions. Both, functional 

electrical stimulation (FES) systems and brain-computer 

interface (BCI) based rehabilitation are earning year by 

year more involvement within the rehabilitation field. 

This paper presents the coupling of a motor imagery 

based BCI system with two feedback modalities. A 

multichannel neurostimulator is controlling both hands, 

performing an extension of the fingers. Secondly, a first-

person Virtual Reality Avatar performs the same motor 

movements. The effectiveness of the proposed method 

has been tested on a 65 year old stroke patient, 

performing fourteen rehabilitation sessions within six 

weeks. 
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Introduction 

  

In the last few years, several publications suggested 

that using motor imagery based Brain-Computer 

Interface (BCI) systems (MI-based BCI) can induce 

neural plasticity and thus serve as important tools to 

enhance motor rehabilitation for stroke patients (e.g. 

Ang, 2011; Shindo, 2012). Ang et al. reported higher 2-

month post-rehabilitation gain on the Fugl-Meyer (FM) 

assessment scale for patients using a BCI-driven robotic 

rehabilitation tool compared to a control group, but 

without significant results. However, among subjects 

with positive gain, the initial difference of 2.8 between 

the two groups was increased to a significant 6.5 after 

adjustment for age and gender. Recently, Shindo et al. 

(Shindo, 2012) tested the effectiveness of 

neurorehabilitation training when using a BCI for 

controlling online feedback from a hand orthosis. The 

motor-driven orthosis was hypothesized to help the 

patient extend his paralyzed fingers from 90 to 50 

degrees. That article also concluded that the therapy 

improved rehabilitation. Grosse-Wentrup et al. 

summarize the state of the art in this research field 

(Grosse-Wentrup, 2011).  

Neurofeedback is a process that uses real-time 

displays of EEG or functional magnetic resonance 

imaginng (fMRI) to illustrate brain activity, usually with 

the goal to control central nervous system activity. In 

MI-based BCIs, neurofeedback is critical to optimize 

the user’s performance. As the user practices the skill, 

sensory and proprioceptive (awareness of body position) 

input initiates feedback regulation through the relevant 

motor circuits. Over time, the skill becomes more and 

more automatic. The learning mechanism in this case is 

similar to learning to ride a bicycle. Hence, the feedback 

must reflect the user’s task in an appropriate way. When 

using the BCI for motor rehabilitation, the feedback 

should be similar to the motor activity.  

Most BCI driven rehabilitation approaches use 

robots or computer controlled orthoses for feedback 

(Ang, 2011). Alternatives could be visual feedback 

(Ortner, 2012) or functional electrical stimulation (FES) 

(Irimia, 2013). The new approach within this 

publication is to demonstrate a more immersive 

feedback strategy: the combination of visual feedback 

and FES, thus stimulate more afferent pathways and 

give the patient a better illusion of hand control. 

  

Materials and methods 

  

The user, a 65 year old right handed man, suffered a 

stroke in the left parietal and frontal lobe, around CZ 

and C3. The treatment started three years after the 

stroke. The detection of MI was done by the method of 

common spatial patterns (CSP). The method of CSP 

creates a set of spatial filter that are optimized for each 

user separately and hence increase classification 

accuracy in comparison to fixed filter setups. For more 

information about the methods of CSP, one may be 

referred to Guger et al. (Guger, 2000) or Blanketz et al. 

(Blankertz, 2008). The signal processing and paradigm 

control was done with an adaptation of RehaBCI (g.tec 

medical engineering GmbH, Austria), a Simulink based 

platform that classifies MI and controls external 

feedback devices via network. Table 1 shows the 

adapted Simulink block. The amplifier reads in the EEG 

of the 64 channels (shown in Figure 1 A) with 256 Hz 

sampling frequency. The spatial patterns are applied 

before the signal is bandpass filtered between 8Hz and 

30Hz. For the four spatially filtered features the 

variance is calculated and log10 normalized. The LDA 

classifier is applied on that normalized data. The 

paradigm block controls the trial timing and sends the 

feedback information to the FES control and Avatar 

control. Figure 3 shows additionally a schematic 

diagram of the experimental setup. The effected hand is 

the right one, but stimulation was performed on both 

hands. In total fourteen sessions distributed over six 
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weeks were performed (see Erro! Fonte de referência 

não encontrada.). The sessions were contucted on 

different days of the week. For the first session, a set of 

generic spatial patterns and a generic classifier was used 

to detect MI. For the following sessions, the data of the 

previous day was used for setting up a specific set of 

CSPs and classifier. One session consisted of three to 

five runs, depending on the daily constitution of the 

patient. One run lasted

 
Figure 1: A) Electrode setup: 64 channels of EEG were measured; the ground was placed on the forehead, the reference on the right 

earlobe. B) trial timing: one trial lasted eight seconds the feedback started at 4.25 seconds until eight seconds. A random interval 

(0.5s-1.5s) between trials was inserted between trials. C) Avatar feedback. 

 
 

Figure 2: Simulink model for the real-time analysis of the EEG data. The g.HIamp block samples the data with 256 Hz. Data are then 

bandpass filtered and the spatial patterns applied. The classifier reads finally the normalized variance of the four spatially filtered 

data streams. 

six minutes, wherein 40 randomized trials were 

executed. The timing of one trial is shown in Figure 1 B. 

After two seconds a beep appeared, demanding the 

user’s attention. The cue phase started at three seconds, 

lasting until second 4.25. Within the cue phase, until the 

end of the trial, the user is asked to imagine motor 

movement of either the left or the right hand. During the 

feedback phase, lasting from 4.25 seconds until the end 

of the trial (eight seconds) the avatar and FES feedback 

is controlled, performing an extension of the fingers, if 

classified. Both feedback devices performed the same 

movement (hand extension and flexion) if MI was 

detected. For FES a neurostimulator (MOTIONSTIM 8, 

MEDEL GmbH, Medicine Electronics, Germany) was 

used. The Avatar feedback was done by showing an 

avatar in the user’s first perspective (see Figure 1 C). 

For evaluation of the rehabilitation success, the 9-

hole PEG test was performed for both hands, each week 

during treatment. 

 
Figure 3: Experimental setup, including g.HIamp, the BCI and 

the two feedback strategies. 

 

Results 

  

Erro! Fonte de referência não encontrada. shows 

minimum classification error during the sessions and the 
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results of the 9-hole Peg tests. The error rate decreased 

from 22.5% to 10% in the last session. It has to be noted 

that during S12 the error rate reached 35%. In that 

session the FES feedback did not work, this could 

explain the bad performance. The 9-hole Peg test was 

performed for both hands at the end of each week, 

except in the first week. 

  

Discussion and Conclusion 

  

In this study a multi-modal feedback for stroke 

rehabilitation was evaluated. All measures, the error rate 

of classification, as well as the time needed for the 9-

hole Peg test decreased over six weeks of training. 

Unfortunately no evaluation of the 9-hole Peg test was 

performed before the first session, or after the first 

week, so only the evolution from the end of the second 

week until the end of training was assessed. In these 

tests, the time needed to finish the task decreased for 

both, the affected (14 seconds) as well as the unaffected 

hand (13 seconds). An interesting fact is that the 

affected hand improved between week two and week 

four by 12 seconds, and then almost stayed constant for 

the rest of the treatment. The effectiveness of treatment 

seems therefore be high at the first sessions, and then 

leverages. The classification error is below 10 % from 

S 7 until the end of treatment, except in S 12. In this 

session the FES feedback did not work and only Avatar 

feedback was provided. It seems that the decrease of 

classification error correlates with the improvements 

showed by the 9-hole Peg test, an observation that has 

to be proven with more patients in the future. The doctor 

of the patient mentioned also, that FES might have a 

greater influence than the visual feedback in the 

rehabilitation process. More measurements can maybe 

proof that.  

  

      9 hole Peg Test (seconds) 

Session#   Error rate (%) 

unaffected 

hand 

affected 

hand 

S1 

week 1 

22.5 

  S2 20 

  S3 30 

  S4 week 2 37.5 46 52 

S5 
week 3 

17.5 

  S6 30 

  S7 5 40 45 

S8 
week4 

5 

  S9 10 35 40 

S10 week 5 2.5 

  S11 7.5 32 40 

S12 

week 6 

35 

  S13 7.5 

  S14 10 33 38 

 

Table 1: Control accuracy of the BCI and results of the 9 hole Peg test during the six weeks of 

training. 
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