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Abstract: This paper presents a methodology for im-
proving breast ultrasound (BUS) classification by using 
intensity-invariant texture features based on log-Gabor 
filtering and ranklet transform. The Fisher’s linear dis-
criminant analysis (FLDA) classifies 641 BUS images 
in benign and malignant lesions. The results point out 
that the FLDA performance improves significantly, in 
terms of area under ROC curve index, from 0.89 to 0.93 
with the proposed scheme. 
Keywords: Breast ultrasound, texture features, classifi-
cation, ranklets, log-Gabor filters 
 
Introduction 
 

Sonographic texture analysis (STA) is helpful in dis-
tinguishing benign from malignant breast lesions on 
ultrasound (BUS). In this sense, radiologists perform 
STA by depicting qualitatively the speckle patterns 
variations among breast tissues; hence, the diagnosis 
depends on their expertise and training. 

To improve radiologists’ decision, computer-aided 
diagnosis (CAD) systems have emerged as a “second 
reader” for analyzing BUS images, whereby the lesions 
are classified by using quantitative morphological and 
texture features. The former attempts to quantify shape 
and contour attributes, whereas the latter describes tis-
sue echo patterns by analyzing locally gray-level varia-
tions [1]. Several texture attributes have been employed 
in BUS classification, which involve gray-level co-
occurrence matrix (GLCM) descriptors, autocovariance 
(or autocorrelation) coefficients, complexity curve de-
scriptors, fractal features, gray-level run-length matrix, 
block-based coefficients, or posterior acoustic behav-
ior [1]. 

Currently, the majority of the proposed CAD sys-
tems assume that BUS images are identical to those 
used in training samples with respect to gray-scale range. 
However, in practical applications, it is very unlikely 
that images are acquired under the same conditions, 
since BUS is highly dependent on the equipment and 
the operator skills. As consequence, the texture features 
depend on the gray-scale distributions of the BUS da-
taset used for CAD system development. 

Recently, great attention has been devoted to intensi-
ty-invariant texture classification, where the input BUS 
image is transformed to a gray-scale invariant represen-
tation for making texture descriptors robust to line-
ar/non-linear monotonic gray-scale transformations, 
such as brightness variations, contrast enhancement, 
gamma correction, histogram equalization, etc. [2]. 

In this paper, we propose a BUS classification ap-
proach, where both the ranklet transform and the log-
Gabor filters are employed for transforming the BUS 
data to an intensity-invariant domain. Thereafter, texture 
features are computed from the transformed data, in-
cluding GLCM descriptors, autocovariance coefficients, 
and autocorrelation. Moreover, a feature selection pro-
cedure is performed to determine the subset of texture 
features that improves the classification performance in 
terms of the area under ROC curve (AUC) index. 
 
Materials and Methods 
 

Image dataset – The 641 BUS images in dataset 
were acquired during routine breast diagnostic proce-
dures at the National Cancer Institute (INCa, Rio de 
Janeiro, Brazil) with an ultrasonic scanner Sonoline 
Sienna equipment (Siemens, Germany), using a 7.5-
MHz linear-array probe, and captured directly from the 
8-bit video signals. All 228 carcinomas and 413 benign 
lesions were histopathologically proven by biopsy. 

It is worth mentioning that texture analysis is per-
formed on a region of interest (ROI), which contains the 
gray-level values within a bounding box that encloses 
the lesion. 

Intensity-invariant transformations – Every ROI 
image from BUS dataset is transformed to an intensity-
invariant representation by using two techniques: log-
Gabor filtering and ranklet transform. In both cases, a 
multi-channel decomposition is performed on the input 
image, in which the outcomes represent purely texture 
data depicted at different orientations-scales/resolutions. 

Log-Gabor filters can be constructed with arbitrary 
bandwidth, minimal aliasing, and practically without 
DC component, which contributes to improve the 
contrast between different textures. The frequency 
response of the oriented log-Gabor function is expressed 
as [3] 
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where (,) denotes the polar coordinates; 0 is the 
filter center frequency; 0 is the filter orientation angle; 
and  and  define the frequency and angular band-
widths, respectively. Then, the filtered image by a log-
Gabor function in the frequency domain is computed as 

, , , ,  u v u v u vF F G (2) 

where Gu,v is the expression of log-Gabor filter in 
Cartesian coordinates system, and Fu,v and F'u,v are the 
original and filtered spectra, respectively. 
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Figure 1: The log-Gabor filters (G, with scales  =1, 2,…,6) and ranklets (Rt

r, with orientations t={H, V, D} and reso-
lutions r ={2, 4, 8}) are derived from an original BUS image and its enhanced version by histogram equalization. 

Thereafter, the inverse Fourier transform of each fil-
tered spectrum is obtained to recover n×n texture 
images, where n=6 and n=24 are the number of scales 
and orientations, respectively. Both parameters were 
determined heuristically in a previous study developed 
by our research group [4]. 

However, for reducing the feature space dimension-
ality, the filtered images at the same scale are averaged 
over all orientations to create six texture images. 

The ranklet transform involves three stages: multi-
resolution, orientation-selective, and nonparametric 
analysis [2]. It considers the relative rank of the pixels, 
within a local region, instead of their gray-scale values; 
hence, it could be defined as an invariant operator to 
linear/nonlinear monotonic intensity transformations of 
the original image. The ranklet coefficient is defined as 
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where Ti is the half part of a local region of size N=r×r, 
with resolutions r ={2, 4, 8} in pixels, for a specific 
orientation, t, that could be vertical (V), horizontal (H), 
or diagonal (D); and π(p) denotes the pixel ranks in Ti. 
The ranklet transform yields nr×nt texture images, where 
nr=3 and nt=3 are the number of resolutions and orienta-
tions, respectively. 

Figure 1 illustrates the intensity-invariant texture 
images derived from log-Gabor filters and ranklet trans-
form applied on both the original BUS image and its 
enhanced version by histogram equalization, that is, 
with a monotonic gray-scale transformation. The trans-

formed texture images are quantized to 64 gray 
levels [5]. 

Texture features – They are computed from the 
transformed ROI image, which are based on GLCM, 
autocovariance coefficients, and autocorrelation.  

The GLCM represents the joint frequencies of all 
pairwise combinations of gray levels i and j separated 
by distance d and along direction θ, and it is defined as 

 

C (i, j )  {(x1,y1),(x2 ,y2 )} x2  x1  d cos ,

               y2 y1  d sin ,I (x1,y1)  i,I (x2 ,y2 )  j ,
 (4) 

where (x1,y1) and (x2,y2) are pixel locations; I(·) is the 
gray-level of the pixel; and ||·|| is the number of pixel 
pairs that satisfy the condition. The GLCM parameters 
are defined as d ={1, 2, 4, 8} in pixels and 
θ={0º, 45º, 90º, 135º}; thus, for each analyzed image, 
16 GLCMs are computed. Besides, in order to reduce 
the dimensionality of the feature space, the GLCMs of a 
same distance are averaged over all orientations to build 
four matrices. Finally, six common texture features are 
extracted from every GLCM: contrast, correlation, 
entropy, sum average, sum entropy, and 
homogeneity [5]. 

The normalized autocovariance coefficients depict 
the inner-intensity variance within the ROI, which is 
computed as [6]
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where Ī is the mean value of I(x,y) and M and N are the 
image width and height, respectively. In this work, 
∆m=∆n=5; hence, for each image a 5×5 autocovariance 
matrix is produced. However, the first coefficient (0,0) 
is removed from the feature space because its value is 
always the unity. 

The autocorrelation of image I(x,y) is defined as [7]  
1

0
( ) (0),




  N

n
R R n R (7) 

where the autocorrelation in depth and its sum in the 
lateral direction are 
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Note that the feature space dimensionality, , is de-
fined by the number of texture images, obtained after 
image transformation, times the number of texture fea-
tures. With respect to log-Gabor filters =294, whereas 
for ranklet transform =441. 

Feature space ranking – We are interested in se-
lecting a subset of texture features by removing irrele-
vant and redundant ones while maintaining acceptable 
classification accuracy. This goal could be achieved by 
ranking the -dimensional feature set according to the 
minimal-redundancy-maximal-relevance (mrMR) crite-
rion followed by the selection of the first  features 
(such that <) with the best classification performance. 

The mrMR criterion measures the mutual infor-
mation (MI) among variables, where the minimal re-
dundancy condition selects the features such that they 
are mutually exclusive, whereas the maximal relevance 
condition quantifies the level of dependency between an 
individual feature and the target class (i.e., benign or 
malignant) [5]. 

Classifying performance – Once the whole -
dimensional feature set is ranked according to mrMR 
criterion, distinct -dimensional feature subsets are 
created by adding iteratively the top  features to the 
classification procedure until all of them are considered, 
that is, =1, 2,…, . 

The Fisher’s linear discriminant analysis (FLDA) is 
frequently used for classifying BUS images because it is 
parameter-free and easy to learn [1]. FLDA creates a 
classification rule, by using training data, which yields 
the largest mean differences between the two desired 
classes: benign and malignant. 

Let μ1 and μ2 be the mean vectors of Class 1 (benign) 
and Class 2 (malignant), respectively, and S denotes the 
pooled covariance matrix; then, the FLDA output for 
some data x in test set is defined as [8]: 

11
1 2 1 22( ) [ ( )] ( ).      TD x x S  (10) 

Discrepancy between the FLDA predicted value and the 
actual class could be used to assess the discrimination 
power of texture features [8]. 

Then, for every -dimensional feature subset, 50 
bootstrap replications are performed to build the train-
ing sets, whereas the test sets considered patterns non-
included into training data.  

 
Figure 2: Flow chart of classification performance pro-
cedure for distinct texture feature subsets. 

The .632+ bootstrap estimator uses the classified test 
sets by FLDA to determine the discrimination power of 
each -dimensional subset in terms of the AUC value, 
which is a quantitative index of the overall performance 
of a classification system. It is usually provided within 
the range [0, 1], where unity stands for perfect discrimi-
nation.  

Finally, the -dimensional feature subset with the 
highest AUC.632+ value (i.e., the best performance), 
denoted as *, is selected as “reference subset”. Next, a 
statistical analysis attempts to find the smallest l*-
dimensional feature subset, such that l*<*, that per-
forms statistically similar to the reference subset given a 
95% confidence interval. To perform such statistical 
analysis, the one-way analysis of variance (ANOVA1, 
α=0.05) test is employed and the correction for multiple 
testing on the basis of the same data is made by the 
Tukey-Kramer method [8]. 

Figure 2 illustrates the schematic block diagram of 
classification performance procedure considering dis-
tinct -dimensional texture feature subsets. 
 
Results 
 

Four distinct texture feature sets were evaluated: 
without intensity-invariant transformation (i.e., original 
dataset) (FS1), log-Gabor filtering (FS2), ranklets (FS3), 
and combining log-Gabor and ranklets features (FS4). 

Figure 3 summarizes the classification performance, 
in terms of AUC.632+ value, attained by each texture 
feature space and distinct dimensionalities. One can 
note that the best performance was reached by *-FS4 
(pointed with symbol ‘▼’). Besides, the ANOVA1 test, 
with Tukey-Kramer correction, was used to perform 
pairwise comparisons between the best feature space 
and the remaining groups. 

It is noticeable that the reduced feature subsets, with 
intensity-invariant transformation, performed statistical-
ly similar than *-FS4, that is: l*-FS2, *-FS2, l*-FS3, *-
FS3, and l*-FS4 (marked with symbol ‘♦’).  
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Figure 3: Classification performance results of sets FS1, 
FS2, FS3, and FS4 for the dimensionalities l*, *, and  
classified by FLDA. The symbol ‘♦’ indicates not statis-
tically difference between groups related to the best one, 
marked with symbol ‘▼’. It is included the performance 
mean±standard deviation values and, in parenthesis, the 
dimensionality of each feature set. 

 
Figure 4: Percentage of texture characteristics regarding 
l*-dimensional subsets for each evaluated feature space. 

Moreover, these feature subsets outperformed all in-
stances in FS1. Also, the feature selection procedure 
improves significantly the classification performance of 
FS2, FS3, and FS4, since irrelevant and redundant fea-
tures were removed. 

Finally, regarding the l*-dimensional feature subsets, 
in Figure 4, it is noticeable that autocovariance coeffi-
cients and autocorrelation are the features with the larg-
est discrimination power when applying intensity-
invariant transformations. 
 
Discussion and conclusions 

 
Commonly, texture features are computed directly 

from original gray-scale BUS images for classification 
purposes. However, it has been demonstrated that tex-
ture attributes are sensitive to gray-level distributions, 
for instance, given two images with similar textures but 
different brightnesses the texture quantification may be 
different. Therefore, recently, Min-Chun et al. [2] em-
ployed gray-scale invariant texture features based on 
ranklet transform and 144 GLCM characteristics for 

classifying 470 BUS images (315 benign tumors and 
155 carcinomas). Despite the authors reported im-
provement in classification rates (from 0.83 to 0.91 
AUC values), they did not perform a feature selection 
procedure for determining a texture subset with the 
highest classification performance. 

On the other hand, we explored ranklets as well as 
log-Gabor filters for depicting intensity-invariant tex-
ture features. Also, common texture features widely 
used in BUS classification (GLCM features, autocovari-
ance and autocorrelation coefficients) were implement-
ed. Besides, a feature selection procedure, based on 
mrMR criterion, was applied to remove irrelevant and 
redundant features. We found that combining ranklets 
and log-Gabor features, the classification performance 
is about AUC.632+=0.93, with 91 texture characteristics. 
Additionally, the most discriminant features are based 
on autocovariance coefficients and autocorrelation. 

Besides, these results point out that the method pre-
sented by Min-Chun et al. [2] was outperformed, since 
the authors obtained lower performance (i.e., 
AUC.632+=0.91) with more characteristics (i.e., 144 
texture features) derived from a single texture technique 
(i.e., GLCM with ranklets). Consequently, our proposed 
approach should require less computational effort for 
classifying breast lesions accurately. 

Therefore, it is convenient using intensity-invariant 
texture features in combination with a feature selection 
procedure and different features computed from distinct 
texture descriptors for increasing the performance of 
CAD systems for BUS images.  
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